期刊文献+

一种新的图像中的人脸区域分割算法 被引量:2

A New Algorithm for Face Region Segmentation in Images
下载PDF
导出
摘要 人脸区域分割对于人脸信息处理研究有着非常重要的意义,既可以直接用于在图像中寻找人脸,又可以作为眼睛、嘴巴等人脸重要特征检测的前序研究。因此,提出了一种新的图像中实施人脸区域分割的算法。首先,利用同态滤波改善图像的光照条件并增强图像的对比度;然后,利用迭代式阈值选择算法对图像进行二值化并增强图像的对比度。在二值图像中依据一定的约束条件找到候选人脸并标定,然后搜寻二值图像中的"空洞"区域,如果"空洞"位置恰好呈倒锐角三角形分布,且位于候选人脸区域内,则证明此候选区域即为人脸区域。实验证明,该算法简单实用,而且很好地避免了光照影响,检测精度较高。 Face region segmentation plays an important role to the face information processing technologies. An algorithm to segment the face region is proposed. The homomorphic filter is used to improve the condition of illumination. The iterative thresh choosing algorithm is used to change the images into binary ones. According to some restrained conditions, the candidate field of the face is found. Then, the holes in the binary images are searched. If the locations of the holes distribute as a reverse acute-angled triangle and they lie in the candidate field of the face, the candidate filed is the real face region. Tests results show that, the algorithm is simple and efficient.
出处 《控制工程》 CSCD 2008年第5期587-589,共3页 Control Engineering of China
基金 教育部留学回国人员科研启动基金资助项目(20055383)
关键词 人脸识别 计算机视觉 轮廓 空洞 face recognition computer vision contour holes
  • 相关文献

参考文献4

  • 1Yang M H. Detecting faces in images: A survey[J]. IEEE Transon PAMI, 2002,24(1) : 34-58.
  • 2Hsu R L, Mohamed A M, Jain A K. Face detection in color images[ J]. IEEE Trans on PAMI, 2002,2 (5) : 696-706.
  • 3陈锻生,刘政凯.肤色检测技术综述[J].计算机学报,2006,29(2):194-207. 被引量:118
  • 4Gonzalez R C, Woods R E. Digital image processing[ M]. Baker & Taylor Books, 2003.

二级参考文献121

  • 1潘志庚,邹鹏程,梁荣华.基于特征人脸和肤色统计的人脸检测[J].系统仿真学报,2004,16(6):1346-1349. 被引量:14
  • 2张晓华,山世光,曹波,高文,周德龙,赵德斌.CAS-PEAL大规模中国人脸图像数据库及其基本评测介绍[J].计算机辅助设计与图形学学报,2005,17(1):9-17. 被引量:40
  • 3Finlayson G.D.,Hordley S.D.,Hubel P.M..Colour by correllation:A simple,unifying framework for colour constancy.IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(11):12097~1221.
  • 4Phung S.L.,Bouzerdoum A.,Chai D..Skin segmentation using color pixel classification:Analysis and comparison.IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(1):149~154.
  • 5Storring M..Computer vision and human skin colour[Ph.D.dissertation].Computer Vision and Media Technology Laboratory,Aalborg University,Denmark,2004,http://www.cvmt.dk/~mst.
  • 6Yang M.H.,Kriegman D.,Ahuja N..Detecting faces in images:A survey.IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(1):34~58.
  • 7Zhao W.,Chellapa R.,Philips P.J.,Rosenfeld A..Face recognition:Literature survey.ACM Computing Survey,2003,35(4):399~458.
  • 8Oliver N.,Pentland A.,Berard F..LAFTER:A real-time face and lips tracker with facial expression recognition.Pattern Recognition,2000,33:1369~1382.
  • 9McKenna S.J.,Morrison K..A comparison of skin history and trajectory-based representation schemes for the recognition of user-specified gestures.Pattern Recognition,2004,37(5):999~1009.
  • 10Ke Y.,Sukthankar R.,Huston L..Efficient near-duplicate detection and sub-image retrieval.In:Proceedings of the 12th ACM International Conference on Multimedia,New York,2004,869~876.

共引文献117

同被引文献15

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部