期刊文献+

一种红外图像去噪的多尺度几何分析法 被引量:2

Method of Infrared Image Denoising Based on Multiscale Geometric Analysis
下载PDF
导出
摘要 针对红外图像处理中的去噪问题,提出了一种基于多尺度几何分析的去噪方法;首先给出了一种改进的模糊阈值选取方法,然后对图像进行bandelets变换,在此过程中对系数进行改进的模糊阈值处理,最终实现图像去噪,同时针对去噪问题给出了bandelets变换过程中压缩率阈值的选取方法;仿真结果表明,对于被加性高斯白噪声污染的图像,该方法的去噪性能要好于正交小波硬阈值去噪方法,并且能够获得很好的边缘保持效果。 Aiming at the problem of infrared image denoising, a new method is given based on muhiscale geometric analysis. At first, the method to compute fuzzy threshold is improved. While making bandelets transform to an infrared image, denoising can be realized by applying the improved fuzzy threshold to bandelets coefficients. At the same time, with respect to bandelets transform, a method to select compression rate threshold is given against denoising. Comparing with hard thresholding based on orthogonal wavelet, the simulation results show that denoising effect of this approach is better for an image that acids additive gauss white noise. Moreover, it can preserve the edges of image well.
出处 《计算机测量与控制》 CSCD 2008年第9期1301-1304,共4页 Computer Measurement &Control
基金 航空科学基金(04I53067) 航天科技创新基金资助项目(05C53005)
关键词 多尺度几何分析 bandelets变换 模糊阚值 红外图像去噪 multiscale geometric analysis bandelets transform fuzzy threshold infrared image denoising
  • 相关文献

参考文献10

  • 1张长江,付梦印,张启鸿,金梅.基于离散平稳小波变换的红外图像去噪[J].光学技术,2003,29(2):250-253. 被引量:13
  • 2周凤岐,遆小光,周军.基于平稳多小波变换的红外图像噪声抑制方法[J].红外与毫米波学报,2005,24(2):151-155. 被引量:12
  • 3Donoho D L, Duncan M R. Digital curvelet transform: strategy, implementation and experments [D]. Dept. Statistics. Stanford Univ, 1999.
  • 4Do M N, Vetterli M. The contourlet transform: an efficient direc tional multiresolution image representation [J]. IEEE Transactions on Image Procession, 2005, 14 (12): 2091 2106.
  • 5Pennec E L, Mallat S. Sparse Geometric Image Representations With Bandelets [J] .IEEE Transactions on Image Procession, 2005, 14 (4): 423-438.
  • 6Donoho D L, Johnstone I M, Kerkyacharian G, et al. Wavelet shrinkage: asymptopia [J]. Journal of royal statistics society, 1995, 57: 301-369.
  • 7Donoho D L, Johnstone I M. Adapting to unknown smoothness via wavelet shrinkage[J] .J. ASA, 1995, 90: 1200-1223.
  • 8Shark L K, Yu C. Denoising by optimal fuzzy thresholding in wavelet domain [J]. Electronics Letters, 2000, 36 (6): 581-582.
  • 9Pennec E L, Mallat S. Image compression with geometrical wavelets [A] . In Proc. of ICIP' 2000[C] . Vancouver, Canada. September, 2000, 611-664.
  • 10Mallat S.信号处理的小波导引[M].北京:机械工业出版社,2002.122-165.

二级参考文献25

  • 1[1]D Donoho. De-noising via soft thresholding[R]. Department of Statistics,Stanford University,1992.
  • 2[2]D L Donoho,I M Johnstone. Ideal spatial adaptation via wavelet shrinkage[J]. Biometrika,1994,81:425~455.
  • 3[3]Donoho David L. Denoising by soft thresholding [J]. IEEE Trans on Information Theory,1995,41(3):613~627.
  • 4[4]Donoho David L,Jhonstone lain M. Threshold selection for wavelet shrinkage of noisy data [A]. In: Proc 16th Annual International Conference of IEEE Engineering in Medicine and Biology Society[C],Baltimore,Maryland. 1994.
  • 5[5]S Grace Chang,Bin Yu,Martin Vetterli. Spatially adaptive wavelet thresholding with context modeling for image denoising[J]. IEEE Trans on Image Processing,2000,9(9):1522~1531.
  • 6[6]M Lang,H Guo,J E odegend,et al. Nonlinear processing of a shift-invariant DWT for noise reduction[A]. In SPIE Conference on wavelet applications[C].1995.
  • 7[7]J C Pesquet,H Krim,H Carfanman. Time invariant orthonormal wavelet representations[A].Submitted to IEEE Trans[C].1994.
  • 8[8]M J Shensa.The discrete wavelet transform:wedding the a trous and Mallat algorithms[J].IEEE Trans.Information Theory,40:2464~2482.
  • 9[9]C Beylkin.On the representation of operators in bases of compactly supported wavelets[J].SIAM J Numer,1992,29(1):1716~1740.
  • 10[10]I M Johnstone,B W Silverman.Wavelet threshold estimators for data with correlated noise[J]. Journal of the Royal Statistical Society,1997,59:319~351.

共引文献54

同被引文献11

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部