期刊文献+

独立分量分析在高光谱图像舰船检测中的应用 被引量:4

Application of Independent Component Analysis to Sea Fleet Detection in Hyperspectral Images
下载PDF
导出
摘要 根据海上舰船目标的特点,提出了一种基于独立分量分析的目标检测算法,应用于高光谱图像海上舰船检测。首先采用基于峰度的快速独立分量分析方法(FastICA)对高光谱图像进行处理,获得统计独立的独立分量影像,然后以偏度为特征度量指标从上述独立分量中选择特征影像,得到舰船目标的检测结果。应用于海上高光谱舰船图像,能够抑制背景中的海浪杂波及舰船尾迹对目标的影响,取得较好的检测效果。实验结果也进一步验证了基于峰度的FastICA算法在高光谱数据分析中的有效性。 A sea fleet target detection approach based on independent component analysis(ICA) is proposed and applied to ship detection in hyperspectral data.Firstly,FastICA approach is used to obtain components that are statistically independent from each other.Then,fleet target feature image is selected from the independent components which has the maximum skewness.Results obtained by applying the new algorithm on data from the operational modular imaging spectrometer(OMIS) show that,the method has an increased efficiency.The experiments confirm the efficiency of FastICA based on kurtosis as an attractive tool for hyperspectral data processing.
出处 《计算机仿真》 CSCD 2008年第9期196-197,299,共3页 Computer Simulation
关键词 高光谱遥感 目标检测 独立分量分析 Hyperspectral remote sensing Target detection ICA
  • 相关文献

参考文献9

  • 1Seungjin Choi. Blind source separation and independent component analysis: a review [ J ]. Neural Information Processing - Letters and Reviews ,2005,6 ( 1 ) : 1 - 57.
  • 2Jen - Tzung Chien, Bo - Cheng Chen. A new independent component analysis for speech recognition and separation [J]. IEEE Trans on Audio, Speech and Language Processing, 2006, 14(4) : 1245 - 1254.
  • 3Farshid Soheili Najafabadi, Edmond Zahedi, Mohd Alauddin Mohd Ali. Fetal heart rate monitoring based on independent component analysis[ J]. Computers in Biology and Medicine, 2006, 36 (3) : 241 - 252.
  • 4Keun - Chang Kwak, Witold Pedrycz. Face recognition using an enhanced independent component analysis approach [J]. IEEE Trans on Neural Networks, 2007, 18(2) : 530 -541.
  • 5S S Chiang, C I Chang, I W Ginsberg. Unsupervised hyperspectral image analysis using independent component analysis [C]. Proceedings of IEEE IGARSS 2000. 3136 -3138.
  • 6钟家强,王润生.基于独立成分分析的多时相遥感图像变化检测[J].电子与信息学报,2006,28(6):994-998. 被引量:30
  • 7T W Lee. Independent component analysis: theory and applications [M]. Boston : Kluwer Academic Publisher, 1998.
  • 8张旭秀,邱天爽.基于峰态的独立分量分析原理的研究[J].电子与信息学报,2005,27(2):206-209. 被引量:3
  • 9Hyvarinen Aapo, Oja Erkki. A fast fixed - point algorithm for independent component analysis [J]. Neural Computation, 1997, 9 (7) : 1483 -1492.

二级参考文献13

  • 1Hyvariene A. Oja E. Fast and robust fixed-point algorithms for independent component analysis[J]. IEEE Trans. on Neural Networks, 1999. 10(3): 626- 634.
  • 2Hyvariene A, Karhunen J, Oja E. Independent Component Analysis [M]. New York: John Wiley & Sons Inc., 2001:165- 181.
  • 3Hyvarinen A. Survey on independent component analysis[J].Neural Computing Surveys, 1999, 2:94 - 128.
  • 4Comon P. Independent component analysis: A new concept?[J].Signal Processing, 1994, 34(4): 287 - 314.
  • 5Singh A.Digital change detection techniques using remotely sensed data[J].Int.J.Remote Sensing,1989,10 (6):989-1003.
  • 6Jensen J R.Introductory Digital Image Processing:A Remote Sensing Perspective[M].New Jersey,Prentice Hall,1996.
  • 7Bruzzone L,Prieto D F.Automatic analysis of the difference image for unsupervised change detection[J].IEEE Trans.on Geosci.Remote Sensing,2000,38 (3):1171-1182.
  • 8Hyvarinen A,Karhunen J,Oja E.Independent Component Analysis[M],New York:Wiley,2001.
  • 9Fran J,Cardoso C.Blind signal separation:statistical principles[J].Proc.IEEE,1998,86 (10):2009-2025.
  • 10Chang C I,Chiang S S,J.Smith A,Ginsberg I W.Linear spectral random mixture analysis for hyperspectral imagery[J].IEEETrans.on Geosci.Remote Sensing,2002,40 (2):375-392.

共引文献31

同被引文献50

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部