期刊文献+

异结构超混沌系统的反同步

Anti-Synchronization in Hyperchaotic Systems with Different Structure
下载PDF
导出
摘要 采用主动控制法和非线性控制法实现了超混沌Chen系统和超混沌Qi系统的不同结构间的反同步,设计了不同的控制器,使得两个超混沌系统实现异构反同步.基于线性系统稳定性原理,运用主动控制法来判别误差动态系统的稳定性;通过构造Lyapunov函数,运用了非线性控制法使两个超混沌系统得以反同步.数字仿真模拟验证了方法的有效性和可行性. Anti-synchronization between hyperchaotic Chen system and hyperchaotic Qi system with different structure is investigated by using active control method and nonlinear controller. Two different controllers are designed for anti-synchronizing these two different hyperchaotic systems. Based on linear system stability theory, the active control synchronization method is used to determine the stability of error dynamical system. The two hyperchaotic systems can be anti-synchronized by constructing Lyapunov function via nonlinear control method. Numerical simulation shows the effectiveness and feasibility of these two methods.
作者 唐漾 方建安
出处 《东华大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第4期428-433,共6页 Journal of Donghua University(Natural Science)
基金 国家自然科学基金项目(10571024)
关键词 超混沌系统 主动控制同步 非线性同步 异结构 反同步 hyperchaotic system active control synchronization nonlinear control synchronization different structure anti-synchronization
  • 相关文献

参考文献12

  • 1PECORA L M,CARROLL T L. Synchronization in Chaotic Systems[J]. Phys Rev Lett, 1990,64(8) : 821 - 824.
  • 2LIDM, LU J A, WU X Q, Linearly Coupled Synchronization of the Unified Chaotic Systems and the Lorenz Systems [J ]. Chaos, Solitons & Fraetals, 2005, 23 (1): 79-85.
  • 3TANG Y, QIU R H, FANG J A, et al. Adaptive Lag Synchronization for Unknown Stochastic Chaotic Neural Networks with Discrete and Distributed Time-Varying Delays [J]. Phys Lett A, 2008, 372(24): 4425-4433.
  • 4LIU F, REN Y, SHAN X M, et. al. A Linear Feedback Synchronization Theorem for a Class of Chaotic Systems [J]. Chaos, Solitons and Fractals, 2002, 13(4): 723- 730.
  • 5TANG Y, FANG J A. General Methods for Modified Projective Synchronization of Unknown Hyperchaotie Systems [J]. Phys Lett A,2008, 372(11): 1816-1826.
  • 6CHEN S, WANG F, WANG C P. Synchronizing Strictfeedback and General Strict-Feedback Chaotic Systems via a Single Controller [J ]. Chaos Solitons & Fractals, 2004, 20 (2) : 235 - 243.
  • 7BELYKH V N, CHUA L O. New Type of Strange Attractor from a Geometric Model of Chua's Circuit [ J ]. International Jounal of Bifurcation and Chaos, 1992, 2 ( 3 ) : 697 - 704.
  • 8CHEN H K. Synchronization of Two Different Chaotic Systems: a New System and Each of the Dynamical Systems Lorenz, Chen and Lu [ J ]. Chaos, Solitons and Fractals, 2005, 25(5): 1049- 1056.
  • 9PARK J H. Chaos Synchronization Between two Different Chaotic Dynamical Systems[J]. Chaos, Solitons & Fractals, 2006, 27(2): 549-554.
  • 10HO M C, HUNG Y C, CHOU C H. Phase and Anti-phase Synchronization of Two Chaotic Systems by Using Active Control[J]. Phys Lett A, 2002,296(1): 43-48.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部