期刊文献+

硫碘制氢中碘化氢分解的化学模拟及实验研究 被引量:2

EXPERIMENT AND SIMULATION STUDY ON HI DECOMPOSITION FOR SI THERMOCHEMICAL CYCLE
下载PDF
导出
摘要 对热化学硫碘制氢中的碘化氢分解反应进行了化学热力学、动力学模拟以及实验研究,同时利用热力学的方法研究了氢气选择性膜对碘化氢分解率的影响。化学热力学模拟中,500℃下,HI的分解率只达到22.8%。但利用膜分离只移走氢气和同时移走氢气和碘蒸气的情况下,分解率分别增长了30.3%和54.8%。化学动力学模拟中,随温度的升高,HI浓度降低曲线呈现一定的线形规律,该分解反应对温度的敏感性较高。通过实验结果和动力学模拟结果的对比,该动力学模型能较好地描述HI分解的化学反应历程。 Thermodynamics, kinetics and experimental study on homogeneous decomposition of hydrogen iodide for sulfuriodine thermoehemieal cycle were investigated. Selective membrane used for HI decomposition was also studied by thermodynamics. According to thermodynamics results, the HI conversion at 500℃ was about 22.8%. But the HI conversion at 450℃ increased to 52. 3% in the case of removing hydrogen and 76.8% in the case of removing both hydrogen and iodine by selective membrane. According to kinetics results, the mole of HI fell linearly as temperature increased at dif- ferent reaction time, latm. HI decomposition reaction is sensitive to temperature. The new detailed kinetics model can describe homogeneous decomposition of HI after comparison between experiment and simulation at different temperature.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2008年第9期1149-1154,共6页 Acta Energiae Solaris Sinica
基金 教育部博士点基金(20050335046) 浙江省自然科学基金(Y106538)
关键词 热化学硫碘循环 制氢 碘化氢分解 热力学模拟 动力学模拟 膜分离 SI thermochemical cycle hydrogen production HI decomposition thermodynamics kinetics membrane
  • 相关文献

参考文献14

  • 1Bamberger C E. Hydrogen production from water by thermochemical cycles; a 1977 update[J]. Cryogenics, 1978, 18 (3) : 170--183.
  • 2Funk J E. Thermochemical hydrogen production: past and present[J]. Int J Hydrogen Energy, 2001, 26:185--190.
  • 3Norman J H, Besenbruch G E, O'Keefe D. Thermochemical water-splitting for hydrogen production[ R]. Gas Research Institute Report, 1981, GRI-80/0105.
  • 4Knoche K F, Scheper H, Hesselmann K. Second law snd cost analysis of the oxygen generation step of the General Atomic sulfur-iodine cycle[ A], Proc of the 5^th World Hydrogen Energy Conf[C]. Toronto, Canada, 1984, 487--502.
  • 5Ozturk I T, Hammache A, Bilgen E. An improved process for H2SO4 decomposition step of the sulfur-iodine cycle[J]. Energy Convers Mgmt, 1995, 36 (1):11--21.
  • 6Kasahara S, Hwang G J, Nakajima H, et al. Effect of process parameter of the IS process on total thermal efficiency to produce hydrogen from water[ J ]. Journal of Chemical Engineering of Japan, 2003, 36(7) :887--899.
  • 7Brown L C, Besenbruch G E, Schultz K R. High efficiency generation of hydrogen fuels using thermochemical cycles and Nuclear Power[J]. GA-A 24326, 2002.
  • 8Kubo S, Nakajima H, Kasaha S, et al. A demenstration study on a closed-cycle hydrogen production by the thermochemical water-splitting iodine-sulfur process [ J ]. Nuclear Engineering and Design, 2004, 233:347--354.
  • 9Seiji Kasahara, Shinji Kubo, Kaoru Onuki, et al. Thermochemical efficiency evaluation of HI systhesis/concentration procedures in the thermochemical water-splitting IS cycle[ J]. Int J Hydrogen Energy, 2004, 29:579---587.
  • 10Nomura Mikihiro, Kasahara Seiji, Okuda Hiroyuki, et al. Evaluation of the IS process featuring membrane techniques by total thermal efficiency [ J ]. Int J Hydrogen Energy, 2005, 30: 1465-- 1473.

同被引文献26

  • 1Norman J H, Besenbruch G E, O' Keefe D. Thermo- chemical water-splitting for hydrogen production [ R ]. GRI-80/0105, Washington DC: Gas Research Institute, 1981.
  • 2Sakaba N, Kasahara S, Onuki K, et al. Conceptual design of hydrogen production system with thermochemical water-splitting iodine-sulphur process utilizing heat from the high-temperature gas-cooled reactor HTTR[J]. International Journal of Hydrogen Energy, 2007, 32 (17): 4160-4169.
  • 3Lee B J, No H C, Yoon H J, et al. An optimal operating window for the Bunsen process in the I-S thermo- chemical cycle[J]. International Association for Hydrogen Energy, 2008, 33(9) : 2200-2210.
  • 4Wang Z H, Chen Y, Zhou C, et al. Decomposition of hydrogen iodide via wood-based activated carbon catalysts for hydrogen production [ J ]. International Journal of Hydrogen Energy, 2011, 36( 1 ) : 216-223.
  • 5Zhang P, Chen S Z, Wang L J, et al. Study on a lab-scale hydrogen production by closed cycle thermo- chemical iodine-sulfur process[ J]. International Journal of Hydrogen Energy, 2010, 35(19) : 10166-10172.
  • 6Wang Hui, Dalla Lana Ivo G, Chuang K T. Kinetics and mechanism of oxidation of hydrogen sulfide by concentrated sulfuric acid[ J ]. Industrial & Engineering Chemistry Research, 2002, 41(26): 6656-6662.
  • 7Wang Hui, Datla Lana Ivo G, Chuang K T. Kinetics of reaction between hydrogen sulfide and sulfur dioxide in sulfuric acid solutions [ J ]. Industrial & Engineering Chemistry Research, 2002, 41 (19) : 4707-4713.
  • 8Wang Hui, Dalla Lana Ivo G, Chuang K T. Themody- namics and stoichiometry of reactions between hydrogen sulfide and concentrated sulfuric acid [ J ]. Canadian Journal of Chemical Engineering, 2003, 81 (1): 80-85.
  • 9Bale C W, Chartrand P, Degterov S A, et al. Fact sage thermochemical software and databases [ Z ]. Calphad, 2002, 26 (2) : 189-228.
  • 10曹战民,宋晓艳,乔芝郁.热力学模拟计算软件FactSage及其应用[J].稀有金属,2008,32(2):216-219. 被引量:83

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部