期刊文献+

基于独立分量分析和径向基网络的人脸识别方法 被引量:2

Face recognition based on independent component analysis and RBF network
下载PDF
导出
摘要 人脸识别是当前人工智能和模式识别的研究热点。基于小波分解和定点独立分量分析,提出了一种新的准正面人脸径向基网络识别算法。二维的小波分解具有对表情变化不敏感的特点,可以很好地压缩和表征人脸图像的特征,定点独立分量分析是一种基于高阶统计信息提取特征的方法,克服了一般ICA收敛慢的缺点;径向基网络作为分类器具有很高的推广性能,有利于大容量样本的分类。在对人脸库ORL和YEL的识别实验中,该算法的识别率达到98%以上,与传统算法相比,识别速度和识别率都明显提高。 Face recognition is an active research area in the artificial intelligence.A new face recognition algorithm using the RBF network is proposed based on wavelet analysis and fixed point ICA. Since wavelet analysis is insensitive to changes in expression,it can effectively express the principal features of the face image by compressing data and corresponding wavelet coefficients.The eigenface of face image can be obtained by the fixed point ICA which is faster than the standard ICA. The RBF network with high generalization is a good classifier,especially for larger samples.Experiment results on ORL and YEL face show that the proposed algorithm,which achieves recognition accuracy of above 98% is more effective and faster than the traditional method.
出处 《国外电子元器件》 2008年第10期64-66,共3页 International Electronic Elements
关键词 网络 识别 人工智能/小波变换 人脸识别 径向基网络 network recognition artificial intelligence/wavelet transform face recognition RBF network
  • 相关文献

参考文献6

二级参考文献28

  • 1[1]R. Chellappa, C. L. Wilson, S. Sirohey, Human and machine recognition of faces: A survey, Proc.IEEE., 1995, 83(5), 705-740.
  • 2[2]A. Samal, P. A. Iyengar, Automatic recognition and analysis of human faces and facial expressions:A survey, Pattern Recognition, 1992, 25(1), 65-77.
  • 3[3]D. Valentin, H. Abdi, A. J. O'Toole, G. W. Cottrel, Connectionist model of face processing: A survey, Pattern Recognition, 1994, 27(9), 1209-1230.
  • 4[4]R. Brunelli, T. Poggio, Face recognition: Feature versus templates, IEEE Trans. on PAMI., 1993,PAMI-15(10), 1042-1052.
  • 5[5]S. ranganath, Face recognition using transform features and neural networks, Pattern Recognition,1997, 30(10), 1615-1622.
  • 6[6]Lam Kin-Man, Yan Hong, An analytical-to-holistic approach for face recognition based on a single frontal views, IEEE Trans. on PAMI., 1998, PAMI-20(7), 673-686.
  • 7[7]M. Turk, A. Pentland, Eigenfaces for recognition, Journal of Cognitive Neuroscience, 1991, 3(1),71-86.
  • 8[8]A. Pentland, B. Moghaddam, T. Starner, View-based and modular eigenspaces for face recognition, IEEE Conf. CVPR'94, Seattle, 1994. 6, 84-91.
  • 9[9]K.M. Lam, H. Yan, An improved method for locating and extracting the eye in human face images, ICPR'96, Vienna, Austria, 1996. 8, C411-C415.
  • 10[10]X. Xie, R. Sudhaker, H. Zhuang, On improving eye feature extraction using deformable templates,Pattern Recognition, 1994, 27(6), 791-799.

共引文献102

同被引文献7

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部