期刊文献+

基于FCM聚类的多超球体一类分类数字图像隐藏信息检测 被引量:3

Steganalysis using OC-SVM with Multi Hyper-spheres Based on FCM
下载PDF
导出
摘要 从净图角度出发,提出了以BMP、JPEG净图特征为基础,采用FCM聚类的多超球体一类分类的隐藏信息检测技术。该技术针对同一类样本的特征存在着部分差异的特点,先将净图样本进行模糊C均值聚类,再将该样本的各子类样本特征输入一类SVM分类器进行训练,建立净图样本各子类的超球体分类模型,以此解决净图检测正确率低的问题。实验结果表明,该方法具有一定的通用性和泛化能力,减少了虚警率和漏检率。 The main focus in this paper is the detection techniques based on the cover images, which are detected using FCM OC-SVM. The feature set of cover samples are firstly clustered by the FCM algorithm. Then, the sub-class data are trained separately and the multi hyper spheres classification models are established. This technology can improve the detection of cover image and stego image and decrease false detection. Meanwhile the effect of many coefficients on the detecting accuracy is analyzed and generalized for broad application.
出处 《中国图象图形学报》 CSCD 北大核心 2008年第10期1918-1921,共4页 Journal of Image and Graphics
关键词 隐藏信息检测 模糊C均值聚类 一类支撑向量机 steganalysis, FCM, OC-SVM(one class-support vector machine )
  • 相关文献

参考文献12

  • 1Farid H, Siwei L. Detecting hidden messages using higher-order statistics and support vector machines[ A ]. In: Proceedings of 5th International Workshop on Information hiding[ C ] , New York, NY, USA : Springer Verlag, 2002 : 340 - 354.
  • 2Burges C. A tutorial on support vector machines for pattern recognition [J]. Data Mining and Knowledge Discovery, 1998, 2(2) :121 - 167.
  • 3戴蒙.基于净图特征的分析的隐藏信息检测技术研究[D],上海:华东理工大学,2007:29-63.
  • 4Vapnik V. Estimation of Dependences based on Empirical Data[ M]. New York, NY, USA: Springer-Verlag,1982.
  • 5Osuna E, Freund R, Girosi F. An improved training algorithm for support vector machines [ A ]. In : Proceedings of IEEE Workshop on Neural Networks and Signal Processing [ C ] , New York NY, USA: IEEE Press, 1997:276 - 285.
  • 6Tax D M J, Duin R P W. Data domain description using support vectors [ A ]. In: Proceedings of the European Symposium on Artificial Neural Networks[C], Brugge, West Flanders, Belgium, 1999:251-256.
  • 7Tax D M J, Duin R P W. Support vector domain description [ J]. Pattern Recognition Letters, 1999,20 ( 11-13 ) : 1191 - 1199.
  • 8Tax D M J. One-class classification [ D ], Delft, SouthHolland, Netherlands: Delft University of Technology, 2001.
  • 9Sugeno M. Yasukawa T. A fuzzy logic based approach to qualitative modeling[ J ]. IEEE Transaction on Fuzzy Systems, 1993, 1 ( 1 ) : 7-31.
  • 10Jain A K,Murt Y M N, Flynn P J. Data clustering: A review [ J]. ACM Computer Survey, 1999, 31(3 ) : 264 - 323.

同被引文献16

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部