期刊文献+

上证股指极值模型估计和VaR计算 被引量:5

Extreme Value Model and VaR Estimation of Shanghai Stock Index
原文传递
导出
摘要 POT极值模型参数的准确估计是计算金融资产回报厚尾分布市场风险的关键.由n阶概率加权矩得到参数的二项式回归估计,而将参数的零、一阶概率加权矩估计予以推广.极大似然估计中,将极大化似然函转化为二元函数无条件极值问题,其他参数估计方法的结果作为迭代的初始值,通过它们的似然函数值和极大似然函数值的比较以及迭代次数判断方法的优劣.实证研究表明:参数的零、一阶概率加权矩估计较接近于真值,随着阶数的提高,二项式回归参数估计的误差很大.参数的极大似然估计优于非线性回归估计优于零、一阶概率加权矩估计.在此基础上计算上证A股指数VaR值. The POT Extreme model parameters accurate estimation is the key to calculatemarket risk of the financial property returns obeying the thick tail distribution. This paper obtains parameter binomial regression estimate by the n step probability-weighted moments, thus the parameter estimation of zero, one step probability-weighted moments has been promoted. In ML estimation, so making likelihood function maximal into the dual function unconditional extreme problems. To judge the method rank, other parameter estimation results as the initial value of iterative, We compare its likelihood function value to ML function value and the number of iterative. Empirical studies show: The parameters estimates of zero and one probability-weighted moments closer to true value, with the increased number of steps, binomial regression parameter estimation error great. The maximum likelihood estimator of parameters is superior nonlinear regression estimates than zero, one probability-weighted moments estimates. Calculate VaR of Shanghai A stock index on this foundation.
作者 桂文林
机构地区 暨南大学统计系
出处 《数学的实践与认识》 CSCD 北大核心 2008年第19期66-73,共8页 Mathematics in Practice and Theory
基金 惠州学院科研基金(C206.0107)
关键词 极大似然估计 矩估计 回归 广义帕雷托分布 maximum likelihood estimation moments estimates regression GPD
  • 相关文献

参考文献11

二级参考文献34

  • 1Shi Daoji,Appl Math B,1995年,10卷,61页
  • 2Basel Committee, Overview of the Amendment of the Capital Accord to Incorporate Market Risk[M], Basle Committee on Banking Supervision, 1996.
  • 3Christofferson, P.F., Elements o f financial risk management [M], San Diego: Academic Press,2003.
  • 4Diebold, F.X. , T. Schuermann, and J. D. Stroughair, Pitfalls and opportunities in the use of extreme value theory in risk management [J], Journal of Risk Finance, 2000, 1. 30-36.
  • 5Embrechts, P. , Extreme value theory : Potential and limitations as an integrated risk management tool [J], Derivatives Use, Trading and Regulation, 2000, 6: 449-456.
  • 6Mcneil, A.J. and R. Frey. , Estimation of tail - related risk measures for heteroscedastic financial time series: an extreme value approach [J], Journal of Empirical Finance, 2000, 7: 271-300.
  • 7Wagner, N. and T. A. Marsh. , Measuring tail thickness under GARCH and an application to extreme exchange rate changes [J], Journal of Empirical Finance, 2005, 12 (1): 165-185.
  • 8Alexander J.McNeil a,Rudiger Frey.Estimation of tail-related risk measures for heteroscedastic financial time series:an extreme value approach[J].Journal of Empirical Finance,2000,6,271~300.
  • 9Fisher R A.Tippett L H C,Limiting forms of the frequency distributions of the largest of smallest memberofa sample[J],Proc,Camb,Phil,Soc,1928,24:180~190.
  • 10Gumbel E J.Statistics of extremes[M].New York:Columbia University Press,1958.

共引文献189

同被引文献86

引证文献5

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部