期刊文献+

多传感器信息融合技术在移动机器人障碍探测中的应用

Application of Multi-sensor Information Fusion Technology to Moving Robot Obstacle Detection
下载PDF
导出
摘要 在移动机器人障碍探测中,需要实时准确的感知环境信息,而单一传感器仅能提供部分环境信息,对环境进行描述时存在局限性。提出采用红外传感器和超声波传感器相结合来感知环境信息,完成障碍物信息的采集,并利用自适应加权融合算法实现数据融合的方案。实验仿真结果表明,多传感器数据融合后比单一传感器所采集的数据更接近于真实值,波动性小,并不易受外界环境的影响。该方案较好地满足了移动机器人障碍探测的需要,具有一定的有效性和实用性。 In moving robot obstacle detection, the real-time accurate sensing of environmental information is needed, but a single sensor can supply only partial environmental information and description of the enviroment is limited. A method that uses the infrared sensor and the ultrasonic sensor unifying the sensation of environmental information is proposed in this paper. It completes the obstacle information gathering, and realizes the data fusion scheme using the auto-adapted weighting fusion algorithm. The simulated experiment proved that gathering the data compared to the single sensor approaches more to real value, with less fluctuation, and is not easily attected by external environment is after multi-sensor data fusion. Thus, this scheme meets the moving robot obstacle detection needs, is valid and is usable.
作者 王艳平
出处 《电子工程师》 2008年第9期55-57,共3页 Electronic Engineer
关键词 移动机器人 红外传感器 超声波传感器 自适应加权融合算法 障碍探测 moving robot infrared sensor, ultrasonic sensor adaptive weighted fusion algorithm obstacle detection
  • 相关文献

参考文献4

二级参考文献15

  • 1薛艳茹,郑冰,郝兴贞,李谦.基于模糊控制信息融合方法的机器人导航系统[J].微计算机信息,2005,21(11Z):107-109. 被引量:16
  • 2Levi P. Principles of Planning and Control Concepts for Autonomous Mobile Robots, Proc[C]. IEEE Int.Conf. Robotics and Automation, Raleigh, North Carolina, 1987 : 874-881.
  • 3Mahajan A, Wang K. Multisensor Integration and Fusion Model That Uses a Fuzzy Inference System[J].IEEE/ASME Transactions on Mechatronics, 2001, ( 6 )2:188-19B.
  • 4Luo, R C Phang. Multilevel Multisensor Based Decision Fusion for Intelligent Animal Robot [C].Proceedings of IEEE International Conference on Robotics and Automation,2001.3294-3299.
  • 5Jiang Chunhong, Chen Zhe. Multisensor Fusion Based on Decision-making in INS/CCD/SAR Integrated System[C]. Proceedings of IEEE Tencon.2002.
  • 6Roggemann M C. Multisensor Information Fusion for Target Detection and Classificarion [ J ]. Sensor Fusion,1988,931:8-13.
  • 7Narendra K S, Parthasarathy K. Identification and Control for Dynamic System Using Neural Network[J]. IEEE Trans on Neural Networks, 1990,1 ( 1 ).
  • 8余永权. 单片机在工业控制中的应用[M]. 北京: 电子工业出版社, 2000.
  • 9应崇福.超声学[M].北京:科学出版社,1998.
  • 10胡伟.传感器接口技术[M].北京:清华大学出版,1997.

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部