期刊文献+

基于区域邻接图的立体视觉边缘匹配算法 被引量:7

Stereo Edge Matching Algorithm Based on Region Adjacency Graph
下载PDF
导出
摘要 针对自然场景轮廓边缘的立体匹配问题,提出了基于区域邻接图的快速匹配算法。首先利用分水岭变换进行图像分割,根据分割区域边界确定图像中场景的轮廓边缘。基于由全局到局部、自上而下的分层匹配思想,匹配过程分为两步:第一步将轮廓边缘按其所属区域进行分组作为匹配基元进行匹配,匹配过程中根据边缘所属区域的位置、尺寸和灰度特征建立区域约束,并在边缘特征角点的引导下,按照区域邻接图采用类似区域生长的匹配策略实现边缘匹配,区域约束大大减少了边缘特征匹配的搜索空间、优化了匹配顺序。第二步则根据边缘匹配结果,以已匹配的边缘特征角点为基准点,在其引导下实现其他边缘点的快速立体匹配。实验结果表明,该算法匹配正确率能达到93%以上,是一种快速有效的立体匹配算法。 To realize the stereo matching of natural scene contour edge, a fast matching algorithm based on region adjacency graph was proposed. Firstly, on the basis of image segmentation by using the watershed transformation method, the contour edges were detected according to the boundaries of the segmented regions. Then the matching process was divided into two steps based on the global-to-local hierarchical matching idea. The first step was region edge matching by grouping the contour edges according to their corresponding regions. After establishing the region constraint based on the region characteristic, the region edge matching was accomplished in the guidance of comers in a similar way of region growing. The region constraint reduced the search area and optimized the matching order effectively. The second step was edge point matching. By using the matched comers as datum marks, the edge constraint established in the first step could limit the search area in several pixels. Experimental results show that the proposed algorithm can acquire high correct matching ratio and fast matching speed.
出处 《光电工程》 EI CAS CSCD 北大核心 2008年第10期92-97,共6页 Opto-Electronic Engineering
基金 国家自然科学基金资助项目(50727502)
关键词 立体视觉 边缘匹配 区域约束 区域邻接图 边缘约束 stereo vision edge matching region constraint region adjacency graph edge constraint
  • 相关文献

参考文献13

  • 1Kanade T, Okutomi M. A stereo matching algorithm with an adaptive window: Theory and Experiment [J]. IEEE Transactions on PAMI, 1994, 16(9): 920-931.
  • 2Stefano L D, Marchiormi M, Mattoccia S. A fast area-based stereo matching algorithm [J]. Image and Vision Computing, 2004, 22(12): 983-1005.
  • 3Zhang Z, Deriche R, Faugeras O, et al. A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry [J]. Artificial Intelligence, 1995, 78: 87-119.
  • 4Kim J, Lee J, Lee M. Development of reference-based fast stereo matching system for the 3D endoscopic images [C]// Proceedings of the 22nd Annual EMBS International Conference of the IEEE. Chicago, USA: IEEE, 2000:1790-1791.
  • 5Kweon J J, Kang D K, Kim S D. A stereo matching algorithm using line segment features [C]//TENCON '89. Fourth IEEE Region 10 International Conference. Bombay, India: IEEE, 1989: 589-592,
  • 6Chang W C, Lee S A. Real-time feature-based 3D map reconstruction for stereo visual guidance and control of mobile robots in indoor environments [C]//2004 IEEE International Conference on Systems, Man and Cybernetics. Hague, Netherlands: IEEE, 2004:5386-5391
  • 7Han J H, Park J S. Contour matching using epipolar geometry [J]. IEEE Transactions on PAMI, 2000, 22(4): 358-370.
  • 8董育宁.一种快速有效的体视图匹配方法[J].南京邮电大学学报(自然科学版),2007,27(3):28-33. 被引量:3
  • 9Ma J, Ahuja N. Region correspondence by global configuration matching and progressive Delaunay triangulation [C]//IEEE International Conference on Computer Vision and Pattern Recognition. Hilton Head Island, USA: IEEE, 2000: 637-642.
  • 10Wei Y C, Quan L. Region-based progressive stereo matching [C]//IEEE International Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2004: 106-113.

二级参考文献12

  • 1HAVALDAR P,MEDIONI G.Full volumetric descriptions from three intensity images[J].IEEE Trans on PAMI,1998,20(5):540-545.
  • 2DARWIN T K.Constraint and consistency in stereo matching[C]∥Proc of IEEE ICASSP.Tokyo,Japan,1986:2079-2082.
  • 3XU G.A motion stereo method based on coarse-to-fine control strategy[J].IEEE Trans on PAMI,1987,9(2):332-336.
  • 4AGUADO A S,MONTIEL E.Progressive linear search for stereo matching and its application to interframe interpolation[J].CVIU,2001,81(1):46-71.
  • 5RUICHEK Y.Multilevel-and neural-network-based stereo-matching method for real-time obstacle detection using linear cameras[J].IEEE Trans on Intelligent Transportation Systems,2005,6(1):54-62.
  • 6MESSMER B T,BUNKE H.A new algorithm for error-tolerant subgraph isomorphism detection[J].IEEE Trans on PAMI,1998,20(5):493-504.
  • 7WILLIAMS J,BENNAMOUN M.Simultaneous registration of multiple corresponding point sets[J].CVIU,2001,81(1):117-142.
  • 8ZHANG Wei.A Stereo Matching Algorithm Based on Multiresolution and Epipolar Constraint[C]∥Proc of Third International Conference on Image and Graphics.2004:180-183.
  • 9丘维声.解析几何[M].北京:北京大学出版社,1996.
  • 10BALLARD D H,BROWN C M.Computer Vision[M].NJ:Prentice-Hall,1982.

共引文献2

同被引文献66

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部