期刊文献+

基于Fisher分值的特征提取在语音确认中的应用

Feature Extraction Based on Fisher Score Applied in Pronunciation Verification
下载PDF
导出
摘要 针对支持向量机不能直接处理动态时间序列的语音数据问题,提出一种基于Fisher分值法的特征提取方法。Fisher分值法可以有效地进行特征向量的定长转换,使得支持向量机可以在整体语音序列上进行分类,从而提高系统的识别率。仿真实验结果表明,该方法在不影响系统识别速度的情况下,具有较高的识别性能。 Aiming at the restriction of SVM in working with fixed-length vectors, a novel feature extraction approach based on Fisher score was proposed. Fisher score can convert the input vectors of variable length into fixedlength vectors effectively. By doing so, SVM could classify on whole sequence. Experiment results showed that this approach achieved good performance and had no impact on the speed of system.
作者 邢玉娟 李明
出处 《科学技术与工程》 2008年第21期5854-5857,共4页 Science Technology and Engineering
关键词 语音确认 特征提取 Fisher分值 支持向量机 高斯混合模型 speech sounds verification feature extraction Fisher score support vector machine Gaussian mixture model
  • 相关文献

参考文献7

  • 1侯风雷,王炳锡.基于说话人聚类和支持向量机的说话人确认研究[J].计算机应用,2002,22(10):33-35. 被引量:11
  • 2[2]Temko A,Monte E,Nadeu C.Comparison of sequence discriminant support vector machines for acoustic event classification.ICASSP,IEEE,2006:721-724
  • 3[3]Jaakkola T S,Haussler D.Exploiting generative models in discriminative classifiers.Advances in Neural Information Processing Systems (NIPS 11),Cambridge,MA:MIT Press,1998
  • 4[4]Holub A D,Welling M,Perona P.Combining generative models and Fisher kernels for object recognition.ICCV'05,IEEE,2005; 1(17-21):136-143
  • 5[5]Xuan Guorong,Zhang Wei,Chai Peiqi.EM algorithms of Gaussian mixture model and hidden Markov model.ICIP'01,IEEE,2001:145-148
  • 6[6]Fujimoto M,Riki Y A.Robust speech recognition in additive and channel noise environments using GMM and EM algorithm.Acoustics,Speech,and Signal Processing,IEEE,2004;1:941-944
  • 7[7]Vapnik V N.The nature of statistical leaning theory.second edition,New York:Springer,2000

二级参考文献1

  • 1Vapnik V . N.The Nature of Statistical Learning Theory ( Second Edition)[]..1999

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部