期刊文献+

基于数学形态学的迷彩修整算法 被引量:1

Camouflage Pattern Finishing Operation Based on Mathematic Morphology
下载PDF
导出
摘要 修整处理是迷彩伪装设计中的关键步骤。本文提出了一种基于数学形态学的迷彩修整算法,着重研究了形态变换类型的选取和迷彩修整颜色的顺序。通过视觉观察和对颜色面积变化、斑块数目及欧拉数等量化指标的对比,确定了选用闭滤波器依次对(201)、(012)和(120)颜色顺序组合进行形态学处理的修整算法。最后采用sobel边缘探测方法对由该算法修整所得迷彩图案的伪装效果进行了评估。结果表明:该算法能够满足迷彩图案,具备较好伪装效果的要求,可以用于军事目标的伪装设计。 Finishing operation is the key step in camouflage pattern design.An effective method for finishing operation based on mathematic morphology is presented in this paper,which emphasizes the selection of morphological transformation type and the order of camouflage colors finishing operation.By carrying out observations and contrasting color area variety,spot number and Euler number of camouflage patterns with different parameters,we determine to choose the finishing method with close filter and color order combination(2 0 1)(0 1 2)(1 2 0).At last,camouflage effect of camouflage pattern with finishing operation method based on mathematic morphology is tested through edge detection with sobel operator.The research result indicates that camouflage pattern finishing operation based on mathematic morphology is good enough for military target camouflage pattern design.
出处 《新技术新工艺》 2008年第9期5-7,共3页 New Technology & New Process
关键词 迷彩设计 修整处理 数学形态学 形态变换 伪装效果 camouflage pattern design finishing operation mathematic morphology morphological transformation camouflage effect
  • 相关文献

参考文献5

二级参考文献9

共引文献80

同被引文献6

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部