期刊文献+

Sensitivity of the Simulated Tropical Intraseasonal Oscillation to Cumulus Parameterizations

Sensitivity of the Simulated Tropical Intraseasonal Oscillation to Cumulus Parameterizations
下载PDF
导出
摘要 The sensitivity of the simulated tropical intraseasonal oscillation or MJO (Madden and Julian oscillation) to different cumulus parameterizations is studied by using an atmospheric general circulation model (GCM)--SAMIL (Spectral Atmospheric Model of IAP LASG). Results show that performance of the model in simulating the MJO alters widely when using two different cumulus parameterization schemes-the moist convective adjustment scheme (MCA) and the Zhang-McFarlane (ZM) scheme. MJO simulated by the MCA scheme was found to be more realistic than that simulated by the ZM scheme. MJO produced by the ZM scheme is too weak and shows little propagation characteristics. Weak moisture convergence at low levels simulated by the ZM scheme is not enough to maintain the structure and the eastward propagation of the oscillation. These two cumulus schemes produced different vertical structures of the heating profile. The heating profile produced by the ZM scheme is nearly uniform with height and the heating is too weak compared to that produced by the MCA, which maybe contributes greatly to the failure of simulating a reasonable MJO. Comparing the simulated MJO by these two schemes indicate that the MJO simulated by the GCM is highly sensitive to cumulus parameterizations implanted in. The diabatic heating profile plays an important role in the performance of the GCM. Three sensitivity experiments with different heating profiles are designed in which modified heating profiles peak respectively in the upper troposphere (UH), middle troposphere (MH), and lower troposphere (LH). Both the LH run and the MH run produce eastward propagating signals on the intraseasonal timescale, while it is interesting that the intraseasonal timescale signals produced by the UH run propagate westward. It indicates that a realistic intraseasonal oscillation is more prone to be excited when the maximum heating concentrates in the middle-low levels, especially in the middle levels, while westward propagating disturbances are more prone to be produced when the maximum heating appears very high. The sensitivity of the simulated tropical intraseasonal oscillation or MJO (Madden and Julian oscillation) to different cumulus parameterizations is studied by using an atmospheric general circulation model (GCM)--SAMIL (Spectral Atmospheric Model of IAP LASG). Results show that performance of the model in simulating the MJO alters widely when using two different cumulus parameterization schemes-the moist convective adjustment scheme (MCA) and the Zhang-McFarlane (ZM) scheme. MJO simulated by the MCA scheme was found to be more realistic than that simulated by the ZM scheme. MJO produced by the ZM scheme is too weak and shows little propagation characteristics. Weak moisture convergence at low levels simulated by the ZM scheme is not enough to maintain the structure and the eastward propagation of the oscillation. These two cumulus schemes produced different vertical structures of the heating profile. The heating profile produced by the ZM scheme is nearly uniform with height and the heating is too weak compared to that produced by the MCA, which maybe contributes greatly to the failure of simulating a reasonable MJO. Comparing the simulated MJO by these two schemes indicate that the MJO simulated by the GCM is highly sensitive to cumulus parameterizations implanted in. The diabatic heating profile plays an important role in the performance of the GCM. Three sensitivity experiments with different heating profiles are designed in which modified heating profiles peak respectively in the upper troposphere (UH), middle troposphere (MH), and lower troposphere (LH). Both the LH run and the MH run produce eastward propagating signals on the intraseasonal timescale, while it is interesting that the intraseasonal timescale signals produced by the UH run propagate westward. It indicates that a realistic intraseasonal oscillation is more prone to be excited when the maximum heating concentrates in the middle-low levels, especially in the middle levels, while westward propagating disturbances are more prone to be produced when the maximum heating appears very high.
出处 《Acta meteorologica Sinica》 SCIE 2008年第3期257-276,共20页
基金 the National Natural Science Foundation of China under Grant Nos.40575027 and 40675051 the Project of Chinese Academy of Sciences(ZKCX-SW-226)
关键词 tropical intraseasonal oscillation cumulus parameterization diabatic heating profile tropical intraseasonal oscillation, cumulus parameterization, diabatic heating profile
  • 相关文献

参考文献10

二级参考文献59

共引文献248

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部