期刊文献+

猪传染性胃肠炎病毒的分离鉴定及全基因组序列分析 被引量:8

Isolation and Genomic Sequence Analysis of Porcine Transmissible Gastroenteritis Virus
下载PDF
导出
摘要 采用ST细胞培养,免疫荧光、理化试验、中和试验、电镜观察等方法,从四川疑似猪腹泻病料中分离到1株猪传染性胃肠炎病毒,命名为SC-Y。分离株在ST细胞上盲传至第8代时可出现稳定的细胞病变,病毒滴度TCID50为10-3.664/0.05ml,中和指数为52。应用长链RT-PCR技术成功地扩增出了覆盖SC-Y株全长基因组的5个片段,通过BioEdit软件对测序结果进行拼接,确认SC-Y株基因组全长28590bp,包括7个开放阅读框,基因组5′端非编码区长315nt,3′端非编码区长277nt。TGEV基因组系统进化树显示,SC-Y株与美国Purdue株可能来源于共同的祖先。 A transmissible gastroenteritis virus strain was isolated from suspect samples in Sichuan province and identified by ST cell culture, direct fluorescent antibody test(FA), neutralization test(NT), TME examination and some other methods, then it was named SC-Y. The isolated strain could produce obvious cytopathic effects(CPE), The TCID50 was 10^-3.664/0.05mL, The neutralization index is 52.5. cDNA fragments covering the complete genome were amplified by the long reverse transcription PCR. The amplified fragments were further cloned and sequenced. The genome of SC-Y strain was assembled by BioEdit. The length of complete genome was 28590 nucletides, and was composed of 70RFs, which was flanked by untranslated regions(UTRs) with 315 bases at the 5'-end and 277 bases at the 3'-end. Phylogenetic analysis based on genome suggested that SC-Y might belong to same subgroup with Purdue strain.
出处 《病毒学报》 CAS CSCD 北大核心 2008年第5期364-368,共5页 Chinese Journal of Virology
基金 教育部长江学者和创新团队发展计划资助(IRT0555)
关键词 猪传染性胃肠炎病毒 病毒分离 全基因组 序列分析 transmissible gastroenteritis virus virus isolation genome sequence analysis
  • 相关文献

参考文献3

二级参考文献52

  • 1Hammond, M.M. and P.J. Timoney, An Electron Microscopic Study of Viruses Associated with Canine Gastroenteritis [J].Cornell Vet, 1983. 73(1): 82--97.
  • 2Marra, M. A. , et al. , The Genome Sequence of the SARS-associated Coronavirus [J]. Science, 2003. 300 (5624) : 1399 --1404.
  • 3Ziebuhr, J. and S.G. Siddell, Processing of the Human Coronavirus 229E Replicase Polyproteins by the Virus--encoded 3C--like Proteinase : Identification of Proteolytic Products and Cleavage Sites Common to Ppla and Pplab[J]. J. Virol. 1999. 73(1): 177--185.
  • 4Nguyen, V.P. and B.G. Hogue, Coronavirus Envelope Glycoprotein Assembly complexes [J]. Adv. Exp. Med. Biol. 1998.440:361--365.
  • 5Collins, A. R. , Virus--ligand Interactions of OC43 Coronavirus with Cell Membranes[J]. Adv. Exp. Med. Biol. 1993.342:285--291.
  • 6Lin, X. Q. , et al. , Temperature--sensitive Acetylesterase Activity of Haemagglutinin--esterase Specified by Respiratory Bovine Coronaviruses [J]. J Med Microbiol, 2000. 49 (12) :1119--1127.
  • 7Chen, W. , et al. , Receptor Homologue Scanning Functions in the Maintenance of MHV--A59 Persistence in Vitro[J]. AdvExp Med Biol, 1998. 440: 743--750.
  • 8Ziebuhr, J. , V. Thiel, and A.E. Gorbalenya, The Autocatalytic Release of a Putative RNA Virus Transcription Factor From its Polyprotein Precursor Involves two Paralogous Papain--like Proteases that Cleave the Same Peptide Bond[J]. J. Biol. Chem. 2001. 276(35): 33220--33232.
  • 9Tahara, S. M. , et al. , Coronavirus Translational Regulation:Leader Affects mRNA Efficiency[J]. Virology,1994. 202(2) :621--630.
  • 10Weiss, S.R. , et al. , Coronavirus Polyprotein Processing[J].Arch. Virol. Suppl. ,1994. 9:349--358.

共引文献45

同被引文献109

引证文献8

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部