期刊文献+

对数饱和非线性介质中的自洽多模高斯孤子解 被引量:3

Self-Consistent Multimode Gaussian Soliton Solution in Logarithmically Saturable Nonlinear Medium
原文传递
导出
摘要 通过解对数饱和非线性介质中光场满足的非线性薛定谔方程,得到一组厄米高斯型的自洽多模解。在借鉴了R.G.Glauber的相干态理论的基础上,合理假设这组解在非线性介质中呈泊松分布,进而得到了在对数饱和非线性介质中存在高斯孤子的结论,并获得高斯孤子解、非线性系数与泊松参量三者之间的关系。该关系说明,若在介质中存在高斯孤子解,其非线性系数必须满足条件α≥1。当α=1,在介质中仅存在单模高斯孤子,其光斑尺寸必须满足的条件w=1knn20。在该条件下,以"束腰"注入介质中的高斯光束才可以在保持其光斑尺寸不变的情况下传输,否则光斑尺寸会存在一定的振荡。而振荡方式、振荡范围(表示光斑尺寸展宽或压缩及大小)与输入光束光斑尺寸及其一次导数有直接关系。 Through solving the nonlinear Schrodinger equation that optical field in logarithmically saturable media satisfies, a set of solutions were founded, which were self-consistent multimode Hermite-Gaussian functions. Because these self-consistent solutions are much like the solutions of one-dimensional harmonic oscillator, it is assumed reasonably that the mode occupation obeys Poisson distribution, just like quantum mechanical Glauber's coherent states. The assumed Possion distribution self-consistently leads to the conclusion that there is Gaussian soliton in logarithmically saturable nonlinear media, and the relationships among the Gaussian soliton, the nonlinear coefficient and the Possion parameter are obtained. If the soliton solution exists, the nonlinear coefficient must satisfy a condition of α≥1. When α= 1, there is single mode Gaussian soliton only, and the beam size must be restricted as a fixed value ω=1/ k √n0/ n2 . Under the condition, the Gaussian beam injected in medium at waist can transmits in the nonlinear medium keeping its beam size constant, otherwise the beam size will oscillate. The oscillating form and amplitude rely directly on the input beam size and its first-order derivative which indicates the beam waist would be expanded or compressed.
出处 《光学学报》 EI CAS CSCD 北大核心 2008年第10期1989-1993,共5页 Acta Optica Sinica
关键词 高斯光束 对数饱和非线性 相干态理论 振荡特性 Gaussian beam logarithmically saturable nonlinearity coherent states theory oscillating feature
  • 相关文献

参考文献17

  • 1R. Y. Chiao, E. Garmire, C. H. Townes. Self-trapping of optical beams[J]. Phys. Rev. Lett., 1964, 13(12): 479-482
  • 2刘雅洁,冯启元.高斯光束在克尔型非线性介质中演化的奇异特性[J].光学学报,2006,26(12):1861-1865. 被引量:8
  • 3张涛,胡巍,龙学文,郭旗,刘海英,王新爱.向列相液晶中强非局域空间光孤子的实验观察[J].光学学报,2007,27(1):143-147. 被引量:12
  • 4George I. Stegeman, Mordehai Segev. Optical spatial solitons and their interactions: universality and diversity[J]. Science, 1999, 286(5444): 1518-1523
  • 5Ole Bang, Yuri S. Kivshar, Alexander V. Baryak. Bright spatial solitons in defocusing Kerr media supported by cascaded nonlinearities[J]. Opt. Lett., 1997, 22(22): 1680-1682
  • 6Charalamber Anastassiou, Clande Pigier, Mordechai Segev et al.. Self-trapping of bright rings[J]. Opt. Lett., 2001, 26(12): 911-913
  • 7Demetrios N. Christodoulides, Tamer H. Coskun, Matthew Mitchell et al.. Theory of incoherent self-focusing in biased photorefractive media[J]. Phys. Rev. Lett., 1997, 78(27): 646-649
  • 8A. V. Buryak, Y. S. Kivshar, Ming-feng Shih et al.. Induced coherence and stable soliton spiraling[J]. Phys. Rev. Lett., 1999, 82(4): 81-84
  • 9H. Buljan, A. iber, M. Soljai et al.. Incoherent white light solitons in logarithmically saturable, noninstantaneous nonlinear media[J]. Phys. Rev. E, 2003, 68: 036607-1-036607-6
  • 10Wieslaw Krolikowski, Darran Edmundson, Ole Bang. Unified model for partially coherent solitons in logarithmically nonlinear media[J]. Phys. Rev E, 2000, 61(3): 3122-3126

二级参考文献54

  • 1郭旗,许超彬.偏离束腰入射对非局域非线性介质中高斯光束演化的影响[J].物理学报,2004,53(9):3025-3032. 被引量:41
  • 2曹觉能,郭旗.不同非局域程度条件下空间光孤子的传输特性[J].物理学报,2005,54(8):3688-3693. 被引量:30
  • 3刘雅洁,冯启元.高斯光束在克尔型非线性介质中演化的奇异特性[J].光学学报,2006,26(12):1861-1865. 被引量:8
  • 4Chiao R Y, Garmire E, Townes C H. Self-trapping of optical beams. Phys. Rzv. Iztt. , 1964, 13(15) :479-482.
  • 5Maneuf S, Reynaud F. Quasi-steady state self-trapping of first, second and third order subnanosecond beams. Opt Commun , 1998, 66(5,6) :325-328.
  • 6Barthelemy A, Maneuf S, Frochly C. Propagation soliton et auto-conflnement de faisceaux laser par non linearite optique de kerr. Opt Qnnmun , 1985, 55(3):201-206.
  • 7Maneuf S, Desailly R, Frochly C. Stable self-trapping of laser beams.. Observation in a nonlinear planar waveguide.Opt Commun , 1988, 65(3) :193-198.
  • 8Duree G C, Shultz J L, Sharp G J et at . Observation of self-trapping of an optical beam due to the photorefractive effect. Phys Rev Lett , 1993, 71(4):533-536.
  • 9She W L, Lee K K, Lee W K. Observation of two-dimensional bright photovoltaic spatial solitons. Phys Rev Lett , 1999, 83(16):3182-3185.
  • 10Liu J S, Lu K Q. Screening-photovoltaic spatial solitons in biased photovoltaicphotorefractive crystals and their self-deflection. J Opt Soc. Am. (B), 1999, 16(4):550-555.

共引文献22

同被引文献39

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部