期刊文献+

高维数据特征降维研究综述 被引量:65

Survey on feature dimension reduction for high-dimensional data
下载PDF
导出
摘要 特征降维能够有效地提高机器学习的效率,特征子集的搜索过程以及特征评价标准是特征降维的两个核心问题。综述国际上关于特征降维的研究成果,总结并提出了较完备的特征降维模型定义;通过列举解决特征降维上重要问题的各种方案来比较各种算法的特点以及优劣,并讨论了该方向上尚未解决的问题和发展趋势。 Feature dimension reduction is effective in improving machine learning, the point is how to search the subset and selection criteria. This paper defined general models for dimension reduction, compared different approaches, and discussed the unresolved topics and development trends.
作者 胡洁
出处 《计算机应用研究》 CSCD 北大核心 2008年第9期2601-2606,共6页 Application Research of Computers
关键词 降维 机器学习 特征选择 特征抽取 评估准则 dimension reduction machine learning feature selection feature abstraction selection criteria
  • 相关文献

参考文献36

  • 1SCHUTZE H, HULL D A, PEDERSEN J O. A comparison of classifiers and document representations for the routing problem[ C ]//Proc of the 18th ACM Int Conf on Research and Development in Information Retrieval. New York : ACM, 1995:229- 237.
  • 2CUTTING D R, KARGER D R, PEDERSON J O, et al. Scatter/gather:a cluster-based approach to browsing large document collections [ C ]//Proc of the 15th Annual Int ACM SIGIR Conf on Research and Development in Information Retrieval. New York:ACM, 1992:315- 329.
  • 3SCHUTEZ H, SILVERSTEIN C. Projections for efficient document clustering[ C]//Proc of the 20th Annual Int ACM SIGIR Conf on Research and Development in Information Retrieval. New York: ACM, 1997,74-81.
  • 4DHILLON I S, MALLELA S, MODHA S. Information theoretic coclustering[C]//Proc of the 9th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York:ACM,2003:89-98.
  • 5PANTEL P, LIN D. Document clustering with committees [ C ]//Proc of the 25th Annual lnt ACM SIGIR Conf on Research and Development in Information Retrieval. 2002:199-206.
  • 6ZHA H, HE X, DING C, et al. Bipartite graph partitioning and data clustering[ C]//Proc of the 10th ACM Conf on Information and Knowledge Management. New York : ACM,2001:25- 32.
  • 7XU W, LIN X, GONG Y. Document clustering based on non-negative matrix factorization [ C ]//Proc of the 26th Annual Int ACM SIGIR Conf on Research and Development in Information Retrieval. New York :ACM,2003:267- 273.
  • 8KONONERKO I. Estimating attributes: analysis and extension of relief[ C]//Proc of European Conf on Machine Learning. 1994: 171- 182.
  • 9SUN Yi-jun. Iterative relief for feature weighting: algorithms, theoties, and applications[J]. IEEE Trans on Pattern Analysis and Machine Intelligence,2007,29 ( 6 ) : 1035-1051.
  • 10NAKARIYAKUI S, CASASENT D P. Adaptive branch and bound algorithm for selecting optimal features [ J ]. Pattern Recognition Letters ,2007,28 ( 12 ) : 1415-1427.

同被引文献533

引证文献65

二级引证文献268

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部