期刊文献+

六面体单元体积坐标方法 被引量:7

VOLUME COORDINATE METHOD FOR HEXAHEDRAL ELEMENTS
下载PDF
导出
摘要 基于二维问题四边形单元面积坐标法的成功思路,建立了三维六面体单元体积坐标的系统方法,包括:1)六面体单元特征参数的定义及单元退化模式研究;2)六面体单元体积坐标定义;3)六面体单元的体积坐标与直角坐标、等参坐标之间的关系;4)六面体体积坐标的微分公式。可以看到,六面体体积坐标保持了局部自然坐标的优点,并且与直角坐标始终保持线性关系。它为构造对网格畸变不敏感的新型六面体有限元模型提供了新工具。 Based on the successful applications of the area coordinate method for quadrilateral elements in 2D problems, a new volume coordinate method is proposed for hexahedral elements in 3D problems, including: 1) the definition of characteristic parameters of a convex hexahedron, and related characteristic conditions under which a hexahedron degenerates into other special solids; 2) the definition of the volume coordinates for hexahedral elements; 3) the transformations between the volume coordinates and the Cartesian and isoparametric coordinates; 4) differential formulas for hexahedral volume coordinates. It can be readily observed that besides keeping the advantages of local natural coordinate system, the new coordinate system has the linearity with the global coordinate system. The volume coordinate method provides a new tool for developing high performance hexahedral elements which are insensitive to mesh distortion.
出处 《工程力学》 EI CSCD 北大核心 2008年第10期12-18,共7页 Engineering Mechanics
基金 国家自然科学基金项目(10502028) 高等学校全国优秀博士论文作者专项基金项目(200242) 教育部新世纪优秀人才支持计划项目(NCET-07-0477)
关键词 有限元 体积坐标 六面体单元 特征参数 列格畸变 finite element volume coordinate hexahedral element characteristic parameter mesh distortion
  • 相关文献

参考文献21

  • 1Taig I C. Structural analysis by the matrix displacement method [R]. English Electric Aviation Report, 1961: S017.
  • 2Irons B M. Engineering application of numerical integration in stiffness method [J]. American Institute of Aeronautics and Astronautics Journal, 1966, 14: 2035- 2037.
  • 3Lee N S, Bathe K J. Effects of element distortion on the performance of isoparametric elements [J]. International Journal for Numerical Methods in Engineering, 1993, 36: 3553-3576.
  • 4龙驭球,李聚轩,龙志飞,岑松.四边形单元面积坐标理论[J].工程力学,1997,14(3):1-11. 被引量:29
  • 5龙志飞,李聚轩,岑松,龙驭球.四边形单元面积坐标的微分和积分公式[J].工程力学,1997,14(3):12-20. 被引量:16
  • 6Chen X M, Cen S, Long Y Q, Yao Z H. Membrane elements insensitive to distortion using the quadrilateral area coordinate method [J]. Computers & Structures, 2004, 82(1): 35-54.
  • 7龙志飞,陈晓明.采用面积坐标的四结点四边形膜元[J].中国矿业大学学报,2000,29(3):310-313. 被引量:7
  • 8龙志飞,陈晓明,龙驭球.采用面积坐标的四边形二次膜元[J].工程力学,2001,18(4):95-101. 被引量:8
  • 9龙驭球,陈晓明.两个抗畸变的四边形膜元[J].清华大学学报(自然科学版),2003,43(10):1380-1385. 被引量:9
  • 10Soh A K, Long Y Q, Cen S. Development of eight-node quadrilateral membrane elements using the area coordinates method [J]. Computational Mechanics, 2000, 25(4): 376-384.

二级参考文献43

  • 1陈万吉 唐立民.等参拟协调元[J].大连工学院学报,1981,20(1):63-74.
  • 2陈万吉 唐立民 等.参拟协调元[J].大连工学院学报,1981,20(1):63-74.
  • 3Andelfinger U, Ramm E. EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements [J]. Int J Num Meth Eng, 1993, 36: 1311- 1337.
  • 4Piltner R, Taylor R L. A systematic constructions of B-bar functions for linear and nonlinear mixed-enhanced finite elements for plane elasticity problems [J]. Int J Num Meth Eng, 1997, 44: 615-639.
  • 5Bazeley G P, Cheung Y K, Irons B M, et al. Triangular elements in bending Conforming and non-conforming solutions [A]. Proc Conf Matrix Methods in Structural Mechanics [C]. Ohio, USA 1965.
  • 6Cook R D. Improved two-dimensional finite element [J]. J Struct Div, ASCE, 1974, 100ST9: 1851- 1863.
  • 7LONG Yuqiu, XU Yin. Generalized conforming triangular membrane element with vertex rigid rotational freedoms [J].Finite Element in Analysis and Design, 1994, 17:259 -271.
  • 8Bassayya K, Bhattacharya K, Shrinivasa U. Eight-node brick, PN340, representing constant stress fields exactly[J]. Computers & Structures, 2000, 74:441 - 460.
  • 9Lee N S, Bathe K J. Effects of element distortion on the performance of isoparametric elements [J]. Int J Num Meth Eng, 1993, 36: 3553-3576.
  • 10SOh Ai-Kah, Long Yuqiu, Cen Song. Development of eight-node quadrilateral membrane elements using the area coordinates method ['J']. Computational Mechanics, 2000,25:376 - 384.

共引文献50

同被引文献52

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部