期刊文献+

一个电路模型的动力学突变行为

Sudden Change of Dynamics Behavior in Circuit Model
下载PDF
导出
摘要 研究一个带耗散性元件的过电压保护电路模型,它由一个保守映象和一个耗散映象耦合而成的分段光滑映象描述。数值研究表明,在一定的参数组合下,系统由规则的周期运动向混沌运动突变,突变后的系统动力学行为由一个具有分数维的混沌类吸引子主宰。 The thesis reports a relaxation and oscillation circuit with over--voltage protection and a dissipative unit, which is described by a piecewise--continuous concatenation of a dissipative map and a conservative map. With a certain group of parameters the system transits suddenly from periodic motion to chaotic motion, then dynamics behavior of the system is dominated by a chaotic quasi--attractor which owns fractal dimention.
作者 巢小刚
出处 《江苏工业学院学报》 2008年第3期65-68,共4页 Journal of Jiangsu Polytechnic University
关键词 分段光滑 周期运动 混沌类吸引子 分数维 piecewise smooth periodic motion chaotic quasi -- attractor fractal dimension
  • 相关文献

参考文献7

  • 1DUTTA M, NUSSES H E, OTT E, et al. Multiple attractor bifurcation: a source of unpredictability in pieeewise smooth system [J]. PhysRevLett, 1999, 83 (21): 4281--4 284.
  • 2Wang Jian, Ding Xiaoling, Hu Banbi, et al. Characteristics of a piecewise smooth area--perserving map [J]. Phys Rev E, 2001, 64: 1--9.
  • 3WangXM, WangYM, HeDR, et al. A quasi--crisis in a quasi--dissipative system [J]. Eur Phys J D, 2002, 19:119 --124.
  • 4JiangYM, LuYQ, HeDR, et al. Acrisisofa stochastic web [J]. EurPhysJD, 2004, 29: 285--292.
  • 5MIRA C. Complex dynamics in two--dimensional endomorphism [J]. Nonlinear Analysis, Theory, Method & Application, 1980, 4: 1 167--1 187.
  • 6CHRISTIAN M. About two--dimensional piecewise continuous noninvertible maps [J]. Inter J Bifur & Chaos, 1996, 6: 893--918.
  • 7杨展如.分形物理学[M].上海:上海科技出版社,2001.2-20.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部