期刊文献+

二维随机孔隙岩石模型及其波场分析 被引量:4

MODEL OF RANDOM POROUS ROCK AND WAVE FIELD ANALYSIS IN 2D SPACE
下载PDF
导出
摘要 建立非均匀介质中随机孔隙岩石模型,引入局部半径(r)和局部孔隙密度(p)两个模型参数。用局部半径(r)表示每一个孔隙分布区的半径,用局部孔隙密度(p)表示孔隙介质在各个孔隙分布区中所占空间的百分比。这个模型可以模拟孔隙尺度具有空间统计分布的随机孔隙岩石介质,并将随机介质模型参数(r,p)与孔隙介质的宏观特性(弹性波速度)直接联系起来。结果表明,选择合适的模型参数能够描述实际复杂的孔隙岩石介质。不同形式的随机孔隙岩石模型中纵波速度和横波速度的变化程度各不相同。弹性波速度相对于大孔隙的响应更容易分辨,在一定的局部孔隙密度和局部半径下,孔隙分布的相对位置变化对波速几乎没有影响。横波对随机孔隙岩石的分辨率比纵波高,横波对随机介质各向异性,特别是对微裂隙相当敏感。 A new heterogeneous constitutive model of random porous rock is established by introducing two model parameters: the local radius(r) and the local porous density(p). In this model, the local radius(r) and the local porous density(p) are used to describe the length of the porous medium and the local porous space density in each distributed porous zone respectively. The elastic properties of rocks containing a random spatial distribution of porous size can be simulated by this model with the connection of the macro-mechanical properties(the elastic wave speeds) of the porous rocks and the model parameters(r and p). Numerical example indicates that the real heterogeneous medium can be modeled effectively as long as appropriate model parameters are given. Different heterogeneous random porous rocks have different scattering effects on wave speeds. The elastic wave speeds caused by larger pore are more distinguishable. The relative random distribution characteristics of pores hardly affect wave speeds under the same random distribution of the local porous density and local radius. The resolving power of S-wave on random porous rock is stronger than that of P-wave, and S-wave is more sensitive to anisotropy caused by micro-cracks.
出处 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2008年第A02期3498-3502,共5页 Chinese Journal of Rock Mechanics and Engineering
基金 国家自然科学基金资助项目(40574056)
关键词 岩石力学 孔隙尺度 随机介质 弹性波 局部半径 自相关函数 rock mechanics porosity scale random media elastic wave local radius self-correlation function
  • 相关文献

参考文献15

  • 1HUDSON J A. Wave speeds and attenuation of elastic waves in material containing cracks[J]. Geophysical Journal of the Royal Astronomical Society, 1981, 64(1): 133- 150.
  • 2HUDSON J A. A higher order approximation to the wave propagation constants for cracked solid[J]. Geophysical Journal of the Royal Astronomical Society, 1986, 87(2): 265 - 274.
  • 3ENRU L, HUDSON J A, TIM P. Equivalent medium representation of fractured rock[J]. Journal of Geophysical Research, 2000, 105(B2): 2 981 - 3 000.
  • 4KORN M. Seismic wave in random media[J]. Journal of Applied Geophysics, 1993, 29(3): 247-269.
  • 5TAE-KYUNG H. Scattering attenuation ratios of P and S waves in elastic media[J]. Geophysical Journal international, 2004, 158(1): 211 - 244.
  • 6TAE-KYUNG H, KENNETT B L N. Scattering of elastic waves in media with a random distribution of fluid-filled cavities: theory and numerical modelling[J]. Geophysical Journal International, 2004, 159(3): 961 - 977.
  • 7LUDEK K. Correlation functions of random media[J]. Pure and Applied Geophysics, 2002, 159(8): 1 811 - 1 831.
  • 8YOMOGIDA K, BENITES R. Scattering of seismic waves by cracks with the boundary integral method[J]. Pure and Applied Geophysics, 2002, 159(8): 1 771 - 1 789.
  • 9CHERNOV L A. Wave propagation in random medium[M]. New York: McGraw-Hill, 1960.
  • 10韩开锋,曾新吾.边界元法模拟含随机分布裂纹介质中波的传播[J].岩土工程学报,2006,28(7):922-925. 被引量:2

二级参考文献9

  • 1Ikelle L, Yung S, Daube F. 2-D random media with ellipsoidal autocorrelation function[J].Geophysics, 1993, 58(9):1359-1372.
  • 2Ergintav S, Canitez N. Modeling of multi-scale media in discrete form[J].Journal of Seismic Exploration, 1997, 6:77-96.
  • 3POINTER Liu E,HUDSON J A.Numerical modeling of seismic waves scattered by hydrofractures:application of the indirect boundary element method[J].Geophys J Int,1998,135:289-303.
  • 4CHEN Gen-meng,ZHOU Hua-wei.Boundary element modeling of nondissipative and dissipative waves[J].Geophysics,1994,59:113-118.
  • 5LIU E,ZHONG Zhong-jie,NIU Bin-hua.BEM simulation of multiple scattering of elastic waves by cracks[J].Proc Int Conf Boundary element Techniques,1999,7:59-66.
  • 6BENITES R,AKI K,YOMOGIDA K.Multiple scattering of SH waves in 2-D midia with many cavities[J].Pure Appl Geophys,1992,138:353-390.
  • 7奚先,姚姚.二维随机介质及波动方程正演模拟[J].石油地球物理勘探,2001,36(5):546-552. 被引量:73
  • 8奚先,姚姚.随机介质模型的模拟与混合型随机介质[J].地球科学(中国地质大学学报),2002,27(1):67-71. 被引量:67
  • 9姚姚,奚先.随机介质模型正演模拟及其地震波场分析[J].石油物探,2002,41(1):31-36. 被引量:59

共引文献62

同被引文献33

  • 1奚先,姚姚.二维粘弹性随机介质中的波场特征分析[J].地球物理学进展,2004,19(3):608-615. 被引量:28
  • 2何又雄,姚姚.各向异性分形介质模拟[J].江汉石油学院学报,2004,26(4):67-69. 被引量:2
  • 3奚先,姚姚,顾汉民.随机溶洞介质模型的构造[J].华中科技大学学报(自然科学版),2005,33(9):105-108. 被引量:36
  • 4崔云龙.简明建井工程手册[M].北京:煤炭工业出版社,2003..
  • 5张翔.复合材料二维随机孔隙模型优化及孔隙形貌对声学参数影响分析[D].大连:大连理工大学,2011.
  • 6中国煤炭建设协会.GB50384—2007煤矿立井筒及硐室设计规范[S].北京:中国计划出版社,2007.
  • 7余海岁.岩土介质小孔扩张理论[M].周国庆,赵光思,梁恒昌,等译.北京:科学出版社,2013: 1-4.
  • 8HERAKOVICHCT,BAXTER S C. Influence of poregeometry on the effective response of porous media[J].Journal of Materials Science, 1999,34: 1595-1609.
  • 9ROBERTS P,GARBOCZI E J. Elastic properties ofmodel porous ceramics[J]. Journal of the American Ce-ramic Society, 2000,83(12): 3041-3048.
  • 10lkelle L, Yung S, Daube F. 2-D ramtom media with ellipsoidal autocorrelation fucti(ms [J]. Geophysics,1993, 58(9): 1359-1372.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部