期刊文献+

旋转机械智能故障诊断技术的发展趋势 被引量:5

Development trend of intelligent fault diagnosis technique of rotary machineries
下载PDF
导出
摘要 对旋转机械智能故障诊断现状进行分析,展望发展趋势.当前的状态监测与故障诊断(condition monitoringand faults diagnosis,CM&FD)系统普遍存在的智能故障决策准确率偏低、可靠性差的状况显示出,相关研究仍面临着非常严峻的挑战.对数据库知识发现(knowledge discovery in database,KDD)和粗糙集理论的介绍表明,基于粗糙集理论工具的KDD为智能诊断向更科学化的方向发展指明了一条实现的新途径.但它也引发出对在线获得的故障知识应进行知识化保护问题研究的新课题. The intelligent faults diagnosis technology of rotating machinery is reviewed. The new trend in the special investigation is prospected. In general, both the precision degree and reliability in application of condition monitoring and faults diagnosis systems are all very low on the automatic decision--making at present. It shows out that the investigations are facing with the challenge. Knowledge Discovery in Database (KDD), the KDD using Rough Set Theory as knowledge mining tool especially, points out a new sci- entific way for the development of machine intelligent diagnosis. But it puts forward a new demand. It is that the knowledge with regard to the faults cases should be protected with data unfailingly and effectually.
出处 《兰州理工大学学报》 CAS 北大核心 2008年第5期36-40,共5页 Journal of Lanzhou University of Technology
基金 国家自然科学基金(50875118) 甘肃省攻关项目(2GS064-A52-035-02)
关键词 旋转机械 故障诊断 数据库知识发现 诊断知识资源 rotating machinery faults diagnosis knowledge discovery in database faults knowledge resource
  • 相关文献

参考文献37

  • 1陈前.关于工程大系统的状态监测与故障诊断[J].振动.测试与诊断,2002,22(3):163-174. 被引量:9
  • 2VENKAT V. Prognostic and diagnostic monitoring of complex systems for product lifecycle management: challenges and opportunities [J]. Computers and Chemical Engineering, 2005,29 (6):1 253-1 263.
  • 3徐小力,梁福平,许宝杰,等.大型汽轮发电机组故障诊断技术现状与发展[EB/OL].[2008-01-04].http://gm.newmaker.com/art_884.htm.
  • 4RAGHUNATHAN R, VENKAT V. A fast training neural network and its updation for incipient fault detection and diagnosis [J].Computers and Chemical Engineering, 2000, 24 (2- 7):431-437.
  • 5ZHANG S, MATHEW J, MA L, et al. Best basis-based intelligent machine fault diagnosis [J]. Mechanical Systems and Signal Processing, 2005,19(2) : 357-370.
  • 6刘峻华,黄树红,陆继东.汽轮机故障诊断技术的发展与展望[J].动力工程,2001,21(2):1105-1110. 被引量:26
  • 7施圣康.汽轮发电机组振动故障诊断技术的发展现状[J].动力工程,2001,21(4):1295-1298. 被引量:22
  • 8MUNOZ A, SANZ-BOBI M A. An incipient fault detection system based on the probabilistic radial basis function network:application to the diagnosis of the condenser of a coal power plant [J]. Neurocomputing, 1998,23(1-3) : 177-194.
  • 9CHEN Changzheng, MO Changtao. A method for intelligent fault diagnosis of rotating machinery [J]. Digital Signal Processing, 2004,14(3) : 203-217.
  • 10熊诗波.大型复杂机械系统的状态监测和故障诊断[J].振动.测试与诊断,2000,20(4):233-235. 被引量:16

二级参考文献106

共引文献429

同被引文献38

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部