期刊文献+

基于自定义阈值函数的小波去噪算法 被引量:26

Wavelet-based power quality disturbances de-noising by customized thresholding
下载PDF
导出
摘要 基于硬阈函数和软阈函数的小波去噪算法处理的信号分别存在偏差和方差过大的缺点,为有效解决这一问题,提出基于自定义阈值函数的小波去噪算法。研究给出了一种改进型的自定义阈值函数,建立了该函数的数学模型,对基于该函数的小波去噪算法的去噪效果进行了仿真,并将该算法应用于实际的电能质量暂态信号检测之中。仿真和实验结果进一步表明了自定义阈值函数的优越性和基于自定义阈值函数小波去噪算法的有效性。 Much of the wavelet-based denoising algorithms are based on hard or soft shrinkage function. It is showed that hard shrink tends to have bigger variance and the soft shrink tends to have bigger bias. To remedy these drawbacks, in this paper, a new denoising algorithm based on customized thresholding function is proposed. The proposed denoising algorithm has two thresholds, the lower threshold and the upper threshold. The upper threshold is fixed to the universal threshold proposed by Donoho, and the lower one can vary its value with the processed signal adaptively. The effectiveness of the proposed algorithm is ascertained using various PQ events, including simulated events and those recorded events at industrial sites. This project is supported by National Natural Science Foundation of Hunan Province(No.05JJ40001).
出处 《电力系统保护与控制》 EI CSCD 北大核心 2008年第19期21-24,共4页 Power System Protection and Control
基金 湖南省自然科学基金(05JJ40001)~~
关键词 小波 去噪 自定义阈值函数 电能质量扰动 wavelet denoising customized thresholding power quality disturbances
  • 相关文献

参考文献5

  • 1Mallat S G.A Theory of Multiresolution Signal Decomposition:the Wavelet Representation[].IEEE Transactions on Pattern Analysis and Machine Intelligence.1989
  • 2Donoho D L,,Johnstone I M.Adapting to Unknown Smoothness via Wavelet Shrinkage[].Journal of the American Statistical Association.1995
  • 3Gao H Y,Bruce A G.Waveshrink with Firm Shrinkage[].Technical Report StatSci Division of MathSoftInc.1996
  • 4Donoho.De-noising by soft-thresholding[].IEEE Trans-actions on Information Theory.1995
  • 5DONOHO D L,JOHNSTONE I M.Ideal spatial adaptation by wavelet shrinkage[].Biometrika.1994

同被引文献255

引证文献26

二级引证文献211

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部