期刊文献+

一种基于ID3的前剪枝改进算法 被引量:4

An Improved Pre-pruning Algorithm Based on ID3
下载PDF
导出
摘要 ID3算法作为一种流行的决策树算法,因为其算法简单、易实现而被广泛使用。但其生成的树结构往往过于庞大,复杂,也影响了算法效率。为了优化树的结构,提高树生成的效率,避免"过拟合"效应,本文将每个分类属性分类后的效果也考虑在内,即,若分类效果达到某个预定的标准则终止那条分支继续分类,并引入了最大支持度的概念,采用了前剪枝策略,对ID3算法进行了改进。实验结果显示,改进算法的确能够使生成的决策树在保证精度的基础上更加精简。 As a popular algorithm of decision tree, ID3 is widely used because of its simple idea and facile realization. However, the structure of the tree produced by this algorithm is usually too large and complex, thus the performance of the algorithm is restricted. In order to enhance the efficiency of the tree-producing process and avoid "overfitting", we take the classification effect of each classifying attribute into account, that is, if the classification effect reaches a certain level, the process of classification of that branch will be terminated, and propose an improved algorithm by using the maximum support and adopting pre-pruning strategy. The experiment results show that the improved algorithm can make decision tree simpler without reducing precise.
作者 丁祥武 王斌
出处 《计算机与现代化》 2008年第9期47-50,共4页 Computer and Modernization
基金 上海市科委资助项目(05DZ11C06)
关键词 数据挖掘 决策树 前剪枝 data mining decision tree pre-pruning
  • 相关文献

参考文献8

  • 1Quinlan J R. Induction of decision trees [ J ]. Machine Learning, 1986,1 ( 1 ) :81-106.
  • 2Quinlan J R. CA. 5: Programs for Machine Learning [ M ]. San Mateo, CA: Morgan Kaufmann, 1993.
  • 3Breiman L, Friedman L, Olshen J H, et al. Classification and Regression Trees[M]. Belmont, CA: Wadsworth International Group, 1984.
  • 4Max Bramer. Using J-pruning to reduce overfitting in classification trees [ J ]. Knowledge-Based Systems, 2002, 15 (5-6) :301-308.
  • 5Mehta M, Agrawal R, Rissanen J. SLIQ: A fast scalable classifier for data mining[ C]// Extending Database Technology, 1996:18-32.
  • 6Shafer J, Agrawal R, Mehta M. SPRINT: A Scalable Parallel Classifier for Data Mining [ R ]. IBM Almaden Research Center, San Jose, California,1996.
  • 7RichardODuda PeterEHart DavidGStork.模式分类[M].北京:机械工业出版社,2003.134-174.
  • 8Jinseog Kim, Yongdai Kim. Maximum a posteriori priming on decision trees and its application to bootstrap BUMPing [J]. Computational Statistics & Data Analysis, 2006,50 (3) :710-719.

共引文献14

同被引文献28

  • 1乔梅,韩文秀.基于Rough集和数据库技术的属性约简算法[J].计算机工程,2005,31(6):18-19. 被引量:9
  • 2Quinlan J R.Induction of decision trees[J].Machine Learning, 1986, 1:81-106.
  • 3韩松来,张辉,周华平.决策树的属性选取策略综述[J].微计算机应用,2007,28(8):785-790. 被引量:5
  • 4Tomdg Chuman, Dugan Romportl. nalysis of cultural landscapes: An public [J]. Landscape and Urban Multivariate classification a- example from the Czech Re- Planning, 2010, 98 (3-4):200-209.
  • 5Noor Elmitiny, YAN Xuedong, Essam Radwan, et al. Classifi- cation analysis of driver's stop/go decision and red-light running violation [J]. Accident Analysis and Prevention, 2010, 42 (1) : 101-111.
  • 6CHEN Yenliang, Lucas Tzu-Hsuan Hung. Using decision trees to summarize associative classification rules [J]. Expert Sys- tems With Applications, 2009, 36 (2): 2338-2351.
  • 7Arun Kumar M, Gopal M. Fast multiclass SVM classification using decision tree based one-against-all method [J]. Neural Processing Letters, 2010, 32 (3): 311-323.
  • 8Chandra B, Paul Varghese P. On improving efficiency of SLIQ deci- sion tree algorithm [C]. Proceedings of International Joint Confe- rence on Neural Networks, Orlando, Florida, USA, 2007.
  • 9DU Jun, CAI Zhihua, Charles X Ling. Cost-senstive decision trees with pre-pruning [G]. LNCS 4509: Proceedings of the 20th Conference of the Canadian Society for Computational Studies of Intelligence on Advances in Artificial Intelligence 2007; 171-179.
  • 10LIU Quan, HU Daojing, YAN Qicui. Decision tree algorithm based on average euclidean distance [C]. 2nd International Conference on Future Computer and Communication, 2010: 507-511.

引证文献4

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部