期刊文献+

改进的人工智能神经网络预测模型及其应用 被引量:11

Prediction model of improved artificial neural network and its application
下载PDF
导出
摘要 针对传统人工智能预测算法在对预测问题峰值变化处理问题上的不足,引入峰值识别理论改进BP神经网络预测模型(SIBP)。在此基础上,利用引入多向全局搜索机制的改进粒子群算法,对SIBP神经网络预测方法进行改进,提出一种具有峰值识别能力、全局学习能力更强的人工智能预测模型,以有效解决基于BP学习方法易于陷入局部极值的问题。将改进后的预测方法应用于"尖峰突变"比较突出的出清电价预测问题,以美国PJM电力市场2005-02-01至2005-05-16的实际数据为样本,对所提出的改进预测方法进行实证分析。研究结果表明:所提出的算法较改进前的BP算法对发生电价突变的短期电价预测精度提高10.16%,运算时间仅增加6.2 s,预测结果证明本文所提出的算法在处理峰值预测问题方面的有效性。 By adopting the spike identification mechanism to improve the traditional BP algorithm on the ability of spike prediction, a BP algorithm with spike identification (SIBP) was proposed. The multi-orientation searching-mechanism was introduced into the particle swarm optimization (PSO) for enhancing the global optimizing-ability, and the improved PSO was combined with the SIBP to avoid the problem of local extreme. A new forecasting method was proposed with stronger learning ability and spike identification. The improved predicting model was applied in the forecasting of market cleaning price(MCP) which fluctuated acutely. Based on the actual date of American PJM power market from 2005-02-01 to 2005-05-16, the new artificial neural network was inspected by comparison with the other different methods, The results indicate that, compared with BP, using the MCP spike prediction model, the forecast accuracy improves by 10.16%, and the time cost of the new method is only increased by 6.2 s and the MCP spike prediction model is effective to solve the prediction problems of peak values.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第5期1054-1058,共5页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(50077007)
关键词 峰值识别 粒子群算法 出清电价 预测模型 spike identification particle swarm optimization market clearing price predication model
  • 相关文献

参考文献13

  • 1Ho K L, Hsu Y Y, Yang C C. Short-term load forecasting using a multilayer neural network with an adaptive learning algorithm[J]. IEEE Trans on Power Systems, 1992, 7(1): 141-148.
  • 2张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2276
  • 3Conejo A J, Plazas M A, Espinola R, et al. Day-ahead electricity price forecasting using the wavelet transform and ARIMA modes 1[J]. IEEE Trans Power System, 2005, 20(2): 1035-1042.
  • 4Park D C, El-Sharkawi M A, Marks R J, et al. Electric load forecasting using an artificial neural network[J]. IEEE Trans on Power Systems, 1991, 6(2): 442-449.
  • 5阎平凡,张长水.人工神经网络与模拟进化计算[M].北京:清华大学出版社.2006.
  • 6刘玲,严登俊,龚灯才,张红梅,李大鹏.基于粒子群模糊神经网络的短期电力负荷预测[J].电力系统及其自动化学报,2006,18(3):47-50. 被引量:27
  • 7Lee K Y, Cha Y T, Park J H. Short term load forecasting using an artificial neural network[J]. IEEE Trans on Power Systems, 1992, 7(1): 124-132.
  • 8李鸿雁,刘寒冰,苑希民,刘树坤.人工神经网络峰值识别理论及其在洪水预报中的应用[J].水利学报,2002,33(6):15-20. 被引量:40
  • 9Van Den Bergh F, Engelbrecht A P. A cooperative approach to particle swarm optimization evolutionary computation[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 225-239.
  • 10Gen M, Yun Y S. Soft computing approach for reliability optimization: State-of-the-art survey[J]. Reliability Engineering & System Safety, 2006, 91(9): 1008-1026.

二级参考文献8

共引文献2344

同被引文献117

引证文献11

二级引证文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部