期刊文献+

声目标分类识别中的噪声去除方法 被引量:2

Noise Cancellation Methods for Acoustic Target Classification
下载PDF
导出
摘要 声信号在传播过程中,常常受到环境噪声(背景噪声)和传输信道的影响,去除各类噪声是对声目标辐射的信号进行特征分析和分类决策的重要基础,也是提高分类识别率的关键环节之一。综合分析和比较了常用的去除加性噪声和卷积噪声的各种方法。 Acoustic signal is usually degraded by environmental noise (background noise) and the transmission channels during its propagation process. To remove the noise is the base of feature analysis and classification decision for the signal emitted by acoustic tal"gets, thus it is one of the key steps for improving the accurate rate of classification. The common methods for the cancellation of additive noise and convolutional noise are reviewed.
出处 《电声技术》 2008年第10期63-67,71,共6页 Audio Engineering
关键词 声目标识别 加性噪声 卷积噪声 acoustic target classification additive noise convolutional noise
  • 相关文献

参考文献17

  • 1CARDOSO J F. Infomax and maximum likelihood for source separation[J]. IEEE Signal Processing Letters, 1997,4(4) : 112-114.
  • 2GOH Z, TAN K C. Kalman-fihering speech enhancement method based on a voiced-unvoiced speech model[J]. IEEE Trans. on Speech and Audio Processing, 1999,7 (5) :510-524.
  • 3甄斌,吴玺宏,刘志敏,迟惠生.语音信号的增强相对谱滤波[J].声学学报,2001,26(3):252-258. 被引量:4
  • 4RAMALHO M A, MAMMONE R J. A new speech enhancement technique with application to speaker identification[C]// Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. [S.1.]:IEEE Press, 1994,1:29-32.
  • 5COMPEMOLLE D V. Noise adaptation in a hidden Markov model speech recognition system[J]. Computer Speech and Languages, 1989,13 (2) : 151-167.
  • 6CLAES T, XIE Fei, VAN COMPEMOLLE D. Spectral estimation and norrnalisation for robust speech recognition[C]// Proceedings of 4th International Conference on Spoken Language. Philadelphia : IEEE Press, 1996,4 : 1997-2000.
  • 7KRIM H, PESQUET J C, SCHICK I C. Parsimony and wavelet methods for denoising[C]// Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. [S.l.] : IEEE Press, 1998,3 : 1869-1872.
  • 8DNOHO D L. De-noising by soft-thresholding[J]. IEEE Trans. on Inform. Theory, 1995,41(3) :613-627.
  • 9ZHANG X P, DESAI M. Nonlinear adaptive noise suppression based on wavelet transform[C]// Proceedings of the IEEE International Conference on Acoustics, Speech,and Signal Processing. [S.l.] :IEEE Press, 1998,3 : 1589- 1592.
  • 10LIEW B F, HUSSAIN A, SAMAD S A. Speech enhancement by noise cancellation using neural network[C]// Proceedings of TENCON 2000. Kuala Lumpur:[s.n.], 2000,1 : 39-42.

二级参考文献47

  • 1甄斌.计算听觉模型及其在鲁棒说话人识别中的应用:博士后研究报告[M].北京:北京大学,..
  • 2[1]R Linsker. An application of the principle of maximum information preservation to linear systems[Z].Adv. Neural Inform. Process Systems, 1989,1.
  • 3[2]Jutten C,Herault J. Blind separation of sources,Part 1:An adaptive algorithm based on neuromimetic architecture[J]. Signal Processing, 1991, 24:1-10.
  • 4[3]Common P. Independent component analysis,a new concept? [J]. Signal Processing, 1994,36:287-314.
  • 5[4]A J Bell,T J Sejnowski. An information-maximisation approach to blind separation and blind deconvo--lution[J]. Neural Computation, 1995,7:1129 1159.
  • 6[5]S,Amari. Natural gradient works eHciently in learning[J]. Neural Computation, 1998,10 (2):251 276.
  • 7[6]J F Cardoso,B H Laheld. Equivariant adaptive source separation[J]. IEEE Trans. Signal Process, 1996,44 (12):3017 3030.
  • 8[7]A Souloumiac. Blind source detection and separation using secondorder nonstationarity[A]. In Proc.ICASSP[C]. 1995:1912-1915.
  • 9[8]M K Tsatsanis,C Kweon. Source separation using second order statistics:Identifiability conditions and algorithms[A]. In Proc.32nd Asilomar Conf. Signals,Syst.,Comput.[C]. 1998:1574-1578.
  • 10[9]K Matsuoka,M Ohya,M Kawamoto. A neural net for blind separation of nonstationary signals[J]. Neural Networks, 1995,8(3):411-419.

共引文献27

同被引文献13

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部