期刊文献+

山地自行车后悬架机构优化设计方法 被引量:10

Optimal Design Method for Mountain Bike Rear Suspension Mechanism
下载PDF
导出
摘要 分析山地自行车后悬架主要类型,将其归纳为单铰结构、摇臂驱动四杆机构和连杆驱动四杆机构三类。在归纳现有山地自行车后悬架机构图谱的基础上,建立减振器所受轴向力与后轮轴所受垂直力之比与后轮轴角位移的映射关系,探讨这种关系对骑行振动舒适性及操控性的影响。以典型样车为例,比较不同形式后悬架机构力比映射特性的差异,得到四杆机构后悬架刚度小于单铰结构后悬架刚度的结论。在此基础上,通过分析找出影响后悬架系统性能的设计参数为:连架杆长度、连杆长度和减振器与车架连接的位置,并以这些参数为设计变量,以实际结构空间限制为约束条件,以设定的力比曲线为优化目标,通过典型实例优化后悬架系统的设计参数,给出一种后悬架机构尺度综合方法。 Almost all kinds of rear suspension systems of mountain bikes are analyzed and classified into three categories: one-hinge rocker-arm configuration, rocker-arm driven four-bar mechanism and connecting rod driven four-bar mechanism. Based on the rear suspension mechanism drawing of mountain bike (MTB) in existence, the mapping relationship is built between the ratio of the axial force of the shock absorber to the vertical force of the rear axle and the angle displacement of the rear axle, and its influence on the riding vibration comfort and maneuverability is further analyzed. Taking the typical MTB as example, the different mapping characteristics of force ratios of different forms of rear suspension mechanisms are compared, and the conclusion is that the rigidity of four-bar mechanism is lower than that of the one-hinge rocker-arm configuration. On this basis and through analysis, the design parameters influencing the performance of the rear suspension system are found to be the length of the side link, the length of the connecting rod and the pivot position of the absorber and the frame. Then, the parameters of a typical MTB rear suspension system are optimized, with the force ratio curve of the system as the cost function, the rod length and absorber position as design variables, the space of the practical configuration as limitation. Finally, a dimension synthesis method of the rear suspension is acquired.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2008年第10期283-287,293,共6页 Journal of Mechanical Engineering
基金 天津市科技发展计划 天津大学天津市先进制造技术与装备重点实验室开放课题(043186211)资助项目。
关键词 山地自行车 后悬架机构 力比曲线 优化设计 Mountain bike Rear suspension mechanism Force ratio curve Optimal design
  • 相关文献

参考文献15

  • 1CHEN C H, LIN M C, CHEN D Y, et al. The comfort evaluation of VR in vibration and slopes environment[C]// Human-Computer Interaction: Ergonomics and User Interfaces. Proceedings of 8th International Conference on Human Computer Interaction and Special Session on Intelligent Tutoring and Learning Environments, August 22-26, 1999, Munich, Germany. Mahwah: Lawrence ErlbaumAssociates, 1999: 133-136.
  • 2BERRY M J, KOVES T R, BENEDETTO J J. The influence of speed, grade and mass during simulated off road bicycling [J]. Applied Ergonomics, 2000, 31(5): 531-536.
  • 3SEIFERT J G, LUETKEMEIER M J, SPENCER M K, et al. The effects of mountain bike suspension system on energy expenditure, physical exertion, and time trial performance during mountain bicycling [J]. International Journal of Sports Medicine, 1997, 18(3): 197-200.
  • 4ISHII T, UMERURA Y, KITAGAWA K. Influences of mountain bike suspension systems on energy supply and performance [J]. Japanese Journal of Biomechanics in Sports and Exercise, 2003, 7: 2-9.
  • 5ROBIN R. Planar, large excursion bond graph model for full suspension mountain biking[C]//American Society of Mechanical Engineers. Dynamic Systems and Control Division. 2005 ASME International Mechanical Engineering Congress and Exposition, November 5-11, 2005, Orlando, FL, USA. New York: ASME, 2005: 1157-1167.
  • 6LEITNER H. Rear suspension for bicycles: US, PCT/ US93/00502 [P]. 1993-07-22.
  • 7BUSBY J S, BEACH L. Bicycles rear suspension: US, 5306036 [P]. 1994-04-26.
  • 8BUSBY J S. Bicycle rear suspension system: US, 540- 9249 [P]. 1995-04-25.
  • 9HARRIS T L. Rear wheel suspension for a bicy- cle and bicycle equipped therewith: US, 5452910 [P]. 1995-09-26.
  • 10OWYANG M S. Integrated rear suspension for a bicycle frame: US, 5772228 [P]. 1998-06-30.

同被引文献70

引证文献10

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部