期刊文献+

带有不等式约束极小问题的全局最优充分性条件

Sufficient global optimality condition for minimization problems with inequality constraints
下载PDF
导出
摘要 通过抽象凸分析理论,给出了带有不等式约束的非线性规划问题的全局最优充分性条件。并利用(L,X)一次微分给出了目标函数是连续可微,约束函数不必是连续可微的极小化问题的全局最优性充分条件。 In this paper, we present the sufficient global optimality condition for nonlinear programming problem with inequality constraints by using abstract convex analysis theory and the global optimality condition for minimization problems that object function is continuously differentiable and constraint function is not necessarily continuously differentiable by (L,X) once differentiation.
作者 王燕
出处 《长春大学学报》 2008年第10期17-19,共3页 Journal of Changchun University
基金 重庆市教委资助项目(KJ070816) 教育部科学技术重点项目(No.206123)
关键词 全局最优 最优性条件 (L X)一次微分 global optimum optimality condition (L,X) once differentiation
  • 相关文献

参考文献3

  • 1V. Jeyakumar,A. M. Rubinov,Z. Y. Wu. Non-convex quadratic minimization problems with quadratic constraints: global optimality conditions[J] 2007,Mathematical Programming(3):521~541
  • 2Z. Y. Wu,V. Jeyakumar,A. M. Rubinov. Sufficient Conditions for Global Optimality of Bivalent Nonconvex Quadratic Programs with Inequality Constraints[J] 2007,Journal of Optimization Theory and Applications(1):123~130
  • 3V. Jeyakumar,A. M. Rubinov,Z. Y. Wu. Sufficient Global Optimality Conditions for Non-convex Quadratic Minimization Problems With Box Constraints[J] 2006,Journal of Global Optimization(3):471~481

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部