期刊文献+

基于状态预测的多智能体动态协作算法 被引量:7

Dynamic Cooperation Algorithm in Multi-Agent System Based on State Prediction
原文传递
导出
摘要 针对复杂动态环境下的多智能体协作问题,提出基于信息处理和状态预测的优化动态协作算法。充分考虑其它智能体对环境的影响,采用重要度函数和信息处理方法,对协作所需信息进行筛选和处理。通过引入状态预测算法,在多智能体动态协作过程中对智能体的行为和系统的状态进行预测,以实现协作结构的在线调整,使得多智能体能在内部以新的控制任务或新的平衡状态为目标,进行联合行动的动态协作。通过在典型的复杂动态MAS研究平台——机器人救援仿真比赛系统中应用,验证了该算法的有效性。 A new technique was proposed for the multi-agent cooperation problem in a complicated dynamic environment. The technique,which was an optimized cooperation algorithm,was based on the information processing and state predicting. The proposed algorithm,which taken the effect of other agents into account fully,adopted importance function and information processing method to filter and process the acquired information. A state prediction method was used to predict the behavior of agents and the trend of the system states during the cooperation process. Consequently,the multi-agent dynamic cooperation model was established according with the new task and the new balanced state. This technique is successfully used in the RoboCupRescue simulation team and validates the generalization and validity of the cooperation algorithm.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第20期5511-5515,共5页 Journal of System Simulation
基金 国家杰出青年科学基金项目(60425310)
关键词 多智能体系统 信息处理 状态预测 动态协作算法 multi-agent system, information processing, state prediction, dynamic cooperation
  • 相关文献

参考文献11

  • 1TOLEDO C B, JENNINGS N R. Learning to Select a Coordination Mechanism [C]// Proceedings of the First International Joint Conference on Autonomous Agents and Multi-Agent Systems: Bologna, Italy, 2002. New York, NY, USA: ACM, 2002:1106-I I 13.
  • 2TOLEDO C B, JENNINGS N R. Learning when and how to Coordinate [J]. International Journal of Web Intelligence and Agent Systems: (S 1570-1263), 2003, 1 (3-4): 203-218.
  • 3L1 X, SOH L K. The use of Hybrid Negotiation in Resource Coordination among Agents [C]// Proceedings of the 2003 1EEE/WIC International Conference on Intelligent Agent Technology (IAT-03): Halifax, Canada, October 2003. USA: IEEE, 2003: 133-139.
  • 4LI X, SOH L K. Applications of Decision and Utility Theory in Multi-Agent Systems [R]// Technical Report TR-UNL-CSE-2004- 0014, Department of Computer Science and Engineering: University of Nebraska-Lincoln, Lincoln, NE, USA: Springer-Verlag, 2004: 9-14.
  • 5CAI Y P, CHEN J, YAO J, LI S. Global Planning from Local Eyeshot: an Implementation of Observation-based Plan Coordination in RoboCup Simulation Games [J]. Lecture Notes in Computer Science RoboCup (S1611-3349), 2002, 2377(2002): 12-21.
  • 6POST S B M, FASSAERT M L. A Commtmication and Coordination Model for RoboCupRescue Agents [D]. The Netherlands: University of Amsterdam, 2004: 54-60.
  • 7MORIMOTO T. RoboCupRescue Simulator Manual version 0 revision 4 The RoboCup Rescue Technical Committee: July 1, 2000, [EB/OL].http://www.rescuesystem.org/roboeuprescue/download.html
  • 8HABIBI J, AHMADI M, NOURI A, SAYYADIAN M, NEVISI M. Utilizing Different Multi-Agent Methods in RoboCupRescue Simulation [C]// Proceedings of the RoboCup, 2002. Tehran, Iran: Sharif University of Technology, 2002: 1-4.
  • 9PENG J, WU M, ZHANG X Y, XIE Y, JIG F, LIU Y. A CoUaborative Multi-Agent Model with Knowledge-based Communication for the RoboCupRescue Simulation [C]// Proceedings of the 2006 International Symposium on Collaborative Technologies and Systems Washington, DC, USA: IEEE Computer Society, 2006:341-348.
  • 10JORGE A, ANDRE S, MIGUEL N. Prediction of Potential Areas of Species Distributions based on Presence-only Data [J]. Environmental and Ecological Statistics (S1573-3009), 2005, 12(1): 27-44.

同被引文献39

  • 1姜楠,张春森.遗传算法在图像模板匹配中的应用[J].红外与激光工程,2008,37(S1):324-327. 被引量:3
  • 2王骋,王浩,方宝富.使用基于值规则的协作图实现多agent的动作选择[J].计算机工程与应用,2004,40(19):61-62. 被引量:1
  • 3周丰,鲜明,肖顺平.基于多智能体技术的协同信息融合系统研究[J].指挥控制与仿真,2006,28(4):13-16. 被引量:7
  • 4张秋花,薛惠锋,吴介军,寇晓东.多智能体系统MAS及其应用[J].计算机仿真,2007,24(6):133-137. 被引量:24
  • 5Chen W,Decker K.Managing multi-agent coordination,planning,and scheduling[C]//3rd International Joint Conference on Autonomous Agents and Multi-agent Systems,New York,USA,2004,1 (3) : 1360-1361.
  • 6Cox J,Durfee E,Bartold T.A distributed framework for solving the agent plan coordination problem[C]//The 4th International Joint Conference on Autonomous Agents and Multi-agent Systems,Utrecht,Nethedands,2005.New York,USA:ACM Press,2005:821-827.
  • 7Dimopoulos Y,Moraitis P.Multi-agent coordination and cooperation through classical planning[C]//Proceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent Technology,Hang Kong, China, 2006.Washington, DC, USA : IEEE Computer Society, 2006 : 398-402.
  • 8Croft W B.User-speeified domain knowledge for document retrieval[C]//Proceedings of the 9th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval,Pisa,Italy, 1986.New York,USA:ACM Press, 1986:201-206.
  • 9姜丽芬,卢桂章,辛运帏.普适计算软件体系结构研究[J].计算机科学,2007,34(9):249-252. 被引量:3
  • 10KONUR S, FERREIN A, LAKEMEYER G. Learning Decision Trees for Action Selection in Soccer Agents[C]. In Proceedings of Workshop on Agents in Dynamic and Real- time Environments, 16th European Conference on Artificial Intelligence, Valencia, Spain, 2004.

引证文献7

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部