期刊文献+

基于支持向量机的电气设备运行状态图像识别方法研究 被引量:4

Recognition Method of Operation Condition Image of Electricity Equipments Based on SVM
下载PDF
导出
摘要 针对电气设备运行状态图像的特点,提出将支持向量机(SVM)分类器应用于多种电气设备运行状态识别中。首先利用C-均值聚类法,分割出运行状态指示牌的汉字或数字部分;再利用K-L变换提取出运行状态的特征向量;最后利用支持向量机分类方法进行状态识别。试验结果表明:支持向量机分类方法对于小样本情况,具有良好的分类能力,适合多种电气设备运行状态的分类,并能获得比神经网络方法更好的识别性能。不同的分类核函数的相互比较分析表明,Sigmoid核函数最适合电气设备运行状态的分类识别。 According to the characters of operation condition image of electricity equipments, a method of the recognition of electricity equipments operation condition was put up based on Support Vector Machine (SVM). First chinese character or number operation condition images of electricity equipments were segmented with color segmentation.Then, characteristic vector of circulation state image of electricity equipments was extracted using K-L transform.At last, classification method of SVM for state recog- nition was used. Experimental results showed that classification method of SVM had better classification ability for smaller sam- ples situation, which adapts to classification of many electricity equipments operating condition, and could get better recognition result than that of neural networks. Comparing with all the kernel functions, kernel function of Sigmoid was the best way to recognition of electricity equipments operation condition.
出处 《沈阳农业大学学报》 CAS CSCD 北大核心 2008年第5期638-640,共3页 Journal of Shenyang Agricultural University
基金 辽宁省自然科学基金(20042102)
关键词 支持向量机 电气设备运行状态 图像识别 C-均值聚类法 support vector machine (SVM) operation condition of electricity equipments image recognition C-mean clustering
  • 相关文献

参考文献3

二级参考文献17

  • 1王亮申,朱玉才,陈少华,侯杰,于京诺,苏子林,欧宗瑛.利用SVM进行车型识别[J].计算机工程与设计,2005,26(9):2453-2454. 被引量:5
  • 2张宇萍,黄宝健.随机矩阵的主行列分析法[J].西安工业学院学报,2005,25(3):289-292. 被引量:1
  • 3鲍艳,胡振琪,柏玉,郭瑞珊.主成分聚类分析在土地利用生态安全评价中的应用[J].农业工程学报,2006,22(8):87-90. 被引量:111
  • 4彭辉,张长水,荣钢,边肇祺.基于K-L变换的人脸自动识别方法[J].清华大学学报(自然科学版),1997,37(3):67-70. 被引量:69
  • 5张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 6Matthews N, An P, Charnley D, et al. Vehicle detection and recognition in greyscale im agery [J]. Control Engineering Pmetiee, 1996, (4) :473-479.
  • 7Vapnik V, Lerner A. Pattern recognition using generalized portrait[J]. Automation and Remote Control, 196:3,24(6) : 774- 780.
  • 8Guo Guodong, Stan Z li, Kap Luk Chan. Support vector machine for face recognition[J]. Image and Vision Computing, 2001,19:6:31-638.
  • 9Burges C. Tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery,1998,2 (2) : 955 -974.
  • 10边肇祺,张学工,等.模式识别(第2版)[M].北京:清华大学出版社,2003.

共引文献112

同被引文献27

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部