期刊文献+

基于direct LDA的幅度谱子空间雷达目标识别 被引量:3

Radar HRRP target recognition in amplitude spectrum subspace based on direct LDA
下载PDF
导出
摘要 针对高分辨距离像(HRRP)可分性低和维数高的问题,提出一种新的雷达自动目标识别(RATR)方法:dLDA&SVM。先采用直接线性判别分析在HRRP的幅度谱空间进行特征提取,然后在子空间中采用角域均值模板库训练one-against-all支撑向量机(SVM)多类分类器进行目标识别。并设计了最短距离分类器与SVM分类器比较。基于外场实测数据的实验结果表明,与LDA幅度谱子空间法,幅度谱原空间法相比,dLDA&SVM可显著降低数据维数并提高识别性能。 High resolution range profile (HRRP) has the problems of low separability and high dimensionality. A novel radar automatic target recognition (RATR) method, i. e. , dLDA&SVM, is presented. Firstly, a direct linear discriminant analysis (dLDA) is used to perform feature extraction in the amplitude spectrum space of HRRP, and then the mean of each azimuth in the resulting amplitude spectrum subspaee is used to train an one-against-all support vector machine (SVM) rnulti-class classifier for target recognition. A shortest distance classifier is also designed for comparing with the SVM classifier. Experimental results for measured data show that comparing with the target recognitions in the amplitude spectrum subspace of LDA and the original amplitude spectrum space, dLDA&SVM can remarkably reduce data dimensionality and improves recognition performance.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2008年第10期1815-1818,共4页 Systems Engineering and Electronics
基金 中意科技合作项目基金资助课题
关键词 雷达自动目标识别 特征提取 直接线性判别分析 高分辨距离像 支持向量机 radar automatic target recognition (RATR) feature extraction direct linear discriminant analysis high resolution range profile (HRRP) support vector machine (SVM)
  • 相关文献

参考文献2

二级参考文献11

  • 1赵群.基于高分辨距离像的雷达目标识别与检测[M].西安电子科技大学,1995..
  • 2唐劲松.高分辨雷达目标检测与识别[M].南京航空航天大学,1996..
  • 3孙光民.基于高分辨回波的雷达目标识别[M].西安电子科技大学,1997..
  • 4周德全.基于一维距离像的雷达目标识别研究[M].南京理工大学,1998..
  • 5廖学军.基于高分辨距离像的雷达目标识别[M].西安电子科技大学,1999..
  • 6Li H J. Matching Score Properties between Range Profiles of High Resolution Radar Targets. IEEE Trans. on AP, 1996, 44(4):444~449.
  • 7Steven P J, Joseph A D. Automatic Target Recognition Using Sequences of High Resolution Radar Range-Profiles. IEEE Trans. on AES, 2000, 36(2):369~370.
  • 8Zhou D, Liu G, Wang J. Spatio-Temporal Target Identification Method of High-Range Resolution Radar. Pattern Recognition, 2000, 33(1):1~7.
  • 9Hudson S, Psaltis D. Correlation Filters for Aircraft Identification from Radar Range Profiles. IEEE Trans. on AES, 1993, 29(3):741~746.
  • 10Li H J, Yang S H. Using Range Profiles as Feature Vectors to Identify Aerospace Objects. IEEE Trans. on AP, 1993, 41(3):261~268.

共引文献9

同被引文献26

  • 1刘宏伟,杜兰,袁莉,保铮.雷达高分辨距离像目标识别研究进展[J].电子与信息学报,2005,27(8):1328-1334. 被引量:71
  • 2赵传强,王汇源.一种基于DCT的改进D-LDA人脸识别算法[J].计算机工程与应用,2007,43(20):245-248. 被引量:4
  • 3Douglas M B,Watts Donald G.非线性回归分析及其应用[M].韦博成,万方焕,朱启图译.北京:中国统计出版社,1997:36-37.
  • 4Liu H,Bao Z.Radar HRR profiles recognition based on SVM with power-transformed-correlation kernel[J].Lecture Notes in Computer Science,2004,3174(1):531-536.
  • 5Chen Bo,Liu Hongwei,Bao Zheng.Optimizing the data-dependent Kernel under a unified Kernel optimization framework[J].Pattern Recognition,2008,41(6):2107-2119.
  • 6Saito N,Beylkin G.Multiresolution representation using the auto-correlation functions of compactly supported wavelets[J].IEEE Trans.on Signal Processing,1993,41(12):3584-3590.
  • 7Chen G Y,Gregory D.Auto-correlation wavelet support vector machine and its applications to regression[C] // Proc.of the Second Canadian Conference on Computer and Robot Vision,2005:246-252.
  • 8Bui T D,Chen G Y,Feng L.An orthonormal-shell-Fourier descriptor for rapid matching of patterns in image database[J].International Journal of Pattern Recognition and Artifical Intelligence,2001,15(8):1213-1229.
  • 9Micha(e)l van A W.A framework for multiscale and hybrid RKHS-based approximators[J].IEEE Trans.on Signal Processing,2000,48(12):3559-3568.
  • 10Xing Meng-dao, Bao Zheng, Pei Bing-nan. Properties of high-resolution range profiles[J]. Optical Engineering, 2002, 41(2): 493-504.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部