期刊文献+

刚性多支点传动轴的弯曲振动分析及支点优化配置

Analysis of Flexural Resonance of Drive Shaft with Rigid Multi-supports and Optimization Design of Multi-supports
下载PDF
导出
摘要 根据质心运动定理、Galerkin法、Heaviside函数,建立非惯性系和非线性系统中倾斜刚性多支点传动轴的弯曲运动方程,并用多尺度法求得稳态弯曲主共振的一次近似定常解,分析传动轴弯曲主共振特性。在此基础上,分析支点位置和数目对弯曲主共振的影响,并以不出现弯曲主共振和主共振分岔为目标,运用Matlab对支点进行优化配置。 A bending motion equation of a tilting drive shaft with rigid multi-supports is derived by theorem of motion of mass center, method of Galerkin and Heaviside function. Approximate steady-state solutions of flexural resonance are obtained through multiple scales method. The shapes, amplitude jump, bifurcation of main resonance are analyzed. The number and position of multi-supports have a serious influence to flexural resonance of drive shaft with multi-supports. With the toolbox of Matlab,dynamics design of the best number and position of multi-supports is able to achieve the goals of having no main resonance, no amplitude jump or no bifurcation.
出处 《机械制造与自动化》 2008年第5期20-24,共5页 Machine Building & Automation
关键词 传动轴 刚性多支点 主共振 振幅突变 分岔 支点配置 drive shaft rigid multi-supports main resonance amplitude jump bifurcation supports design
  • 相关文献

参考文献5

  • 1Ding J, Krodkiewski J M. Inclusion of static indetermination in mathematical model for non-linear dynamic analyses of multibeating rotor system [ J]. Journal of Sound and Vibration, 1993, 164(2) : 267-280.
  • 2Ding J J, Jumaily A A. Alinear regression model for the identification of unbalance in rotating machines [J]. Journal of Sound and Vibration, 1993, 164(2) : 267-280.
  • 3Krodkiewski J M, Sun L. Modeling of multi-bearing rotor system incorporation an active journal bearing [ J ]. Journal of Sound and Vibration, 2000, 231 ( 1 ) : 125-144.
  • 4丁千,陈予恕.迟滞型材料阻尼转轴的分岔[J].应用数学和力学,2003,24(6):565-571. 被引量:9
  • 5张俊红,于镒隆,高宏阁.多支承转子系统弯曲振动分析方法研究[J].机械工程学报,2004,40(11):35-41. 被引量:4

二级参考文献21

  • 1钟一鄂.转子动力学[M].北京:清华大学出版社,1987..
  • 2Den Hartog J P . Mechanical Vibration [ M J .New York:McGraw-Hill, 1965.
  • 3Tondl A. Some Problems of Rotor Dynamics [ M]. London: Cbapmann & Hall, 1965.
  • 4Vance J M,Lee J. Stability of high speed rotors with internal damping[J]. J Engineering for Industry, 1974,96(4) :960-968.
  • 5Zhang W,Ling F H. Dynamic stability of the rotating shaft mode of Boltzmann visco-elastic solid[J].J Appl Mech, 1986,53(2):424-429.
  • 6Shaw J, Slmw S W. Instability and bifurcation in a rotating shaft[J]. J Sound Vibration, 1989,132(2) : 227-244.
  • 7Chang C O,Cheng J W. Non-linear dynamics and instability of a rotating shaft-disk system[J]. J Sound Vibration, 1993,160(3) :433-454.
  • 8Shaw J, Shaw S W.Non-linear resonance of an unbalanced rotating shaft with internal damping[J] .J Sound Vibration, 1991,147(3) :435-451.
  • 9Golubitsky M, Schaeffer D G. Singularities and Groups in Bifurcation Theory, Vol 1 [ M ]. New York: Sptinger-Verlag, 1985.
  • 10Myklestad N O. A new method of calculating natural modes of uncoupled bending vibration of airplane wings and other types of beams. Journal of Mechanical Engineering Science, 1944, 11(4):153~162

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部