摘要
为了使原油开采获得最大的累积净现值,研究了化学驱的最优控制问题。该最优问题受非线性偏微分方程组支配,并且带有控制约束。根据分布参数系统最优控制的必要条件推导了连续形式的伴随方程以及性能指标的梯度,在推导伴随方程过程中完全展开了状态方程中的非线性项。给出了一种基于控制向量参数化的数值求解方法,将无穷维的最优控制问题转换为非线性规划问题进行求解。对聚合物驱注入浓度的优化问题进行了实例计算,获得了最优注入策略,验证了所提出方法的可行性和有效性。
An optimal control problem (OCP) of the chemical flooding was investigated to maximize the cumulative net present value gained from oil-field development. The OCP is governed by a set of nonlinear partial differential equations and involves control constraints. The continuous adjoint equations and the gradients of the performance index were derived by using the necessary conditions of the OCP for distributed parameter systems. The nonlinear items of the state equations were fullly expanded in order to derive the adjoint equations. A numerical algorithm based on control vector parameterization was presented to solve the problem, which transformed the infinite dimensional OCP into nonlinear programming problem. An example of the injection concentration optimization in polymer flooding was solved and the optimal injection strategies were obtained, which illustrated the practicality and effectiveness of the proposed method.
出处
《中国石油大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2008年第5期148-153,共6页
Journal of China University of Petroleum(Edition of Natural Science)
基金
国家'973'计划项目(2004CB31800)
关键词
分布参数系统
最优控制
化学驱
控制向量参数化
distributed parameter systems
optimal control
chemical flooding
control vector parameterization