期刊文献+

一种半监督K均值多关系数据聚类算法 被引量:22

Semi-Supervised K-Means Clustering Algorithm for Multi-Type Relational Data
下载PDF
导出
摘要 提出了一种半监督K均值多关系数据聚类算法.该算法在K均值聚类算法的基础上扩展了其初始类簇的选择方法和对象相似性度量方法,以用于多关系数据的半监督学习.为了获取高性能,该算法在聚类过程中充分利用了标记数据、对象属性及各种关系信息.多关系数据库Movie上的实验结果验证了该算法的有效性. A semi-supervised K-means clustering algorithm for multi-type relational data is proposed, which extends traditional K-means clustering by new methods of selecting initial clusters and similarity measures, so that it can semi-supervise cluster multi-type relational data. In order to achieve high performance, in the algorithm, besides attribute information, both labeled data and relationship information are employed. Experimental results on Movie database show the effectiveness of this method.
出处 《软件学报》 EI CSCD 北大核心 2008年第11期2814-2821,共8页 Journal of Software
基金 Supported by the National Natural Science Foundation of China under Grant Nos.60496321 60773099 60573073(国家自然科学基金) the National High-Tech Research and Development Plan of China under Grant Nos.2006AA10Z244 2006AA10A309(国家高技术研究发展计划(863)) the Science and Technology Development Plan of Jilin Province of China under Grant No.20030523(吉林省科技发展计划) the European Commission under Grant No.TH/Asia Link/010(111084)(欧盟项目)
关键词 数据挖掘 半监督学习 聚类算法 多关系数据 K均值聚类 data mining semi-supervised learning clustering algorithm multi-type relational data K-means clustering
  • 相关文献

参考文献12

  • 1Dzeroski S. Multi-Relational data mining: An introduction. ACM SIGKDD Explorations Newsletter, 2003,5(1):1-16.
  • 2Dzeroski S, Lavrac N. Relational Data Mining. Berlin: Springer-Verlag, 2001. 339-364.
  • 3Domingos P. Prospects and challenges for multi-relational data mining. ACM SIGKDD Explorations Newsletter, 2003,5(1):80-83.
  • 4Bouchachia A. Learning with partly labeled data. Neural Computing and Applications, 2007,16(3):267-293.
  • 5Zhu XJ. Semi-Supervised learning literature survey. Technical Report, Computer Sciences TR 1530, University of Wisconsin- Madison, 2007. 1-42.
  • 6Chapelle O, Seholkopf B, Zien A. Semi-Supervised Learning. Cambridge: MIT Press, 2006. 3-14.
  • 7Long B, Zhang F, Wu XY, Yu PS. Spectral clustering for multi-type relational data. In: Cohen WW, Moore A, eds. Proc. of the 23rd Int'l Conf. on Machine Learning. New York: ACM Press, 2006. 585-592.
  • 8Marques de Sa JP, Wrote; Wu YF, Trans. Pattern Recognition Concepts, Methods and Applications. 2nd ed., Beijing: Tsinghua University Press, 2002.51-74 (in Chinese).
  • 9http://archive.ics.uci.edu/ml/datasets.html
  • 10Yin XX, Han JW, Yu PS. CrossClus: User-Guided multi-relational clustering. Data Mining Knowledge Discovery, 2007,15(3): 321-348.

共引文献4

同被引文献185

引证文献22

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部