期刊文献+

基于最速上升算法的超光谱图像波段选择搜索算法 被引量:5

Band selection algorithm of hyperspectral image based on steepest-ascent search algorithm
下载PDF
导出
摘要 超光谱遥感数据具有的波段数目多、波段宽度窄、数据量庞大等特点,给图像的进一步解译带来困难。结合超光谱图像波段选择的具体应用,根据波段之间的相关性将整个波段划分为几个子波段,采用最速上升的特征选择搜索算法在各子波段中快速提取最优波段。为了验证本算法的有效性,分别选取JM距离、BH距离以及类内类间离散度作为评价准则,针对一幅200波段的AVIR IS超光谱图像进行分类实验,并将该方法与传统的SFFS算法进行对比。实验结果表明所采用的算法用于特征选择具有搜索能力强、分类精度高的特点,完全可以替代传统的SFFS算法。 This paper proposed a band selection approach of hyperspectral image based on steepest-ascent search algorithm. The approach needed to divide the whole hyperspectral band into several subgroups in terms of the relativity between bands firstly, and then applied the steepest-ascent search strategy to quickly extracting optimal band in every subgroup in which the combinations of bands was indicated by binary vectors and the search was being along the steepest direction until the local extreme was acquired. In order to verify the ralidity of this algorithm, the approach was compared with the classical sequential forward floating selection suboptimal techniques, using hyperspectral remote sensing images as a data set. Experimental results prove the ralidity of this algorithms, which can be regarded as a valid alternative to classical SFFS method.
出处 《计算机应用研究》 CSCD 北大核心 2008年第11期3501-3503,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(60872098)
关键词 超光谱图像 特征选择 最速上升搜索算法 hyperspectral image feature selection steepest-ascent search algorithm
  • 相关文献

参考文献7

  • 1JAIN A, ZONGKER D. Feature selection: evaluation, application, and small sample performance[ J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997,19 (2) : 153-158.
  • 2WARNER T, SHAND M. Spatial autocorrelation analysis of hyperspectral imagery for feature sel_ection[ J]. Remote Sensing of the Environment, 1997,60:58-70.
  • 3KIRA K, RENDELL L A. The feature selection problem:traditional methods and a new algorithm[ C]//Proc of the 9th National Conf oh AI. 1992 : 129-134.
  • 4SEBASTIANO B S ,BRUZZONE L. A new search algorithm tor feature selection in hyperspectral remote sensing images[ J]. IEEE Trans on Geoscience and Remote Sensing,2001,39 (7) :1360-1367.
  • 5刘建平,赵英时.高光谱遥感数据解译的最佳波段选择方法研究[J].中国科学院研究生院学报,1999,16(2):153-161. 被引量:81
  • 6KOLLER D,SAHAMI M. Toward optimal feature selection[ C]//Proc of Int' l Conf on Machine Learning. 1996:284-292.
  • 7DASH M, LIU H. Feature selection for classification [ J]. Intelligent Data Analysis,1997 ,1 (3) :131-156.

二级参考文献11

  • 1李德熊.TM合成图像波段组合的选择[J].遥感信息,1989,(4):19-22.
  • 2刘建平.高光谱遥感数据处理分析软件系统设计与实现:硕士论文[M].,1999..
  • 3赵水平.临床血脂学(第二版)[M].长沙:湖南科技卫生出版社,2002.115-167.
  • 4孙强 陈俊.血管紧张素对内皮一氧化氮形成的影响[J].中华现代内科学杂志,2002,20(6):480-480.
  • 5刘建平,硕士学位论文,1999年
  • 6陈述彭,遥感信息机理研究,1998年,139页
  • 7陈述彭,遥感地学分析,1990年
  • 8李德熊,遥感信息,1989年,4期,19页
  • 9贾永红,李德仁,刘继林.四种IHS变换用于SAR与TM影像复合的比较[J].遥感学报,1998,2(2):103-106. 被引量:84
  • 10陆灯盛,游先祥,崔赛华.TM 图像的信息量分析及特征信息提取的研究[J].环境遥感,1991,6(4):267-274. 被引量:41

共引文献80

同被引文献55

引证文献5

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部