期刊文献+

一个新的五阶超混沌电路及其研究 被引量:21

A novel fifth-order hyperchaotic circuit and its research
原文传递
导出
摘要 提出一个新的五阶超混沌电路.该电路由三个线性电感、两个线性电容、一个线性负电阻和二个非线性元件组成,并具有π形的电路结构.其主要特征是,利用非线性元件的作用来切换电路中的时间常数,使其电压和电流发生急剧变化.利用负电阻可满足电路局部发散的条件,并且这种电压和电流的急剧变化以及局部发散是该电路产生混沌与超混沌的两个前提条件.分岔和李雅普诺夫指数计算结果表明,随着分岔参数的改变,电路的振荡机理由周期态演变为混沌态,再由混沌态演变为超混沌态.设计了五阶超混沌电路,给出了硬件实验结果. A novel fifth-order hyperchaotic circuit is proposed.This circuit is composed by three linear inductors,two linear capacitors,one negative resistor,and two nonlinear elements,and has the π type circuit configuration.By switching the time constant of the circuit by the action of nonlinear element,the voltage and current is rapidly changed,and by using negative resistors,the condition for local divergence in the circuit is satisfied.The rapid change of voltage and current and local divergence are two primary conditions for generating chaos and hyperchaos in the circuit.Bifurcation and Lyapnuov exponent calculations demonstrate that the oscillation mechanism of the circuit evolves into chaos and hyperchaos from periodic with the change of bifurcation parameters.Furthermore,the fifth-order hyperchaotic circuit has been designed and the result of hardware experiment is reported.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2008年第11期6859-6867,共9页 Acta Physica Sinica
基金 国家自然科学基金(批准号:60572073 60871025) 广东省自然科学基金(批准号:8151009001000060 8351009001000002)资助的课题~~
关键词 超混沌电路 超混沌吸引子 电路实验 hyperchaotic circuit,hyperchaos attractor,circuit experiment
  • 相关文献

参考文献24

  • 1Lorenz E N 1963 J. Atmos. Sci. 20 130
  • 2Chua L O, Komuro M, Matsumoto T 1986 IEEE Trans. Circuits Syst. I 33 1072
  • 3Elwakil A S, Kennedy M P 2001 IEEE Trans. Circuits Syst. I 289
  • 4Elwakil A S, Ozoguz S, Kennedy M P 2002 IEEE Trans. Circuits Syst. I 49 527
  • 5Ozoguz S, Elwakil A S, Kennedy M P 2002 Int. J. Bifurc. Chaos 12 1627
  • 6Chen A M, Lu J A, Lu J H, Yu S M 2006 Physica A 364 103
  • 7Suykens J A K, Vandewalle J 1993 IEEE Trans. Circuits Syst. 1 40 861
  • 8Yalcin M E, Suykens J A K, Vandewalle J 2000 IEEE Trans. Circuits Syst. 1 47 425
  • 9Yalcin M E, Suykens J A K, Vandewalle J 2002 Int. J. Bifurc. Chaos 12 23
  • 10Tang K S, Zhong G Q, Chen G R2001 IEEE Trans. Circuits Syst. I 48 1369

二级参考文献22

  • 1禹思敏,林清华,丘水生.一类多折叠环面混沌吸引子[J].物理学报,2004,53(7):2084-2088. 被引量:27
  • 2[1]Matsumoto T, Chua L O, Komuro M 1985 IEEE Trans. CAS- Ⅰ 32 798
  • 3[2]Yin Y Z 1997 Int. J. Bifurc. Chaos 7 1401
  • 4[3]Matsumoto T, Chua L O, Kobayashi K 1986 IEEE Trans. CAS- Ⅰ 33 1143
  • 5[4]Cuomo K M, Oppenheim A V, Strogatz S H et al 1993 IEEE Trans. CAS- Ⅱ 40 626
  • 6[5]Yalcin M E, Suykens J A K, Vandewalle J 2000 IEEE Trans. CAS- Ⅰ 47 425
  • 7[6]Tang W K S, Zhong G Q, Chen G et al 2001 IEEE Trans. CAS- Ⅰ 48 1369
  • 8[7]Li J F, Li N 2002 Chin. Phys. 11 1124
  • 9[8]Liu C X 2002 Acta Phys. Sin. 51 1198 (in Chinese)[刘崇新 2002 物理学报 51 1198]
  • 10[12]Yu S M, Qiu S S, Lin Q H 2003 Sci. Chin. F 46 104

共引文献64

同被引文献190

引证文献21

二级引证文献230

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部