期刊文献+

挖掘关联规则Apriori算法的一种改进 被引量:3

An Improved Aprior Algorithm Based on Mining Association Rule
下载PDF
导出
摘要 本研究在对Apriori算法分析的基础上,提出了改进的Apriori算法。改进后的算法采用矩阵表示数据库,减少了扫描事物数据库的次数;利用向量运算来实现频繁项集的计数,同时及时地去掉不必要的数据,减少了数据运算,从而提高了算法的运行效率。 Based on analysis of the classical Apriori algorithm in mining association rule, this paper presents an improved Apriori algorithm to increase the efficiency of generating association rules. The improved algorithm adopts matrix to express database, which can reduce the times of database scanning . The improved algorithm use vectors operation to count frequent item sets and get rid of unwanted data simultaneously. Redundant data are deleted in time to improve the Apriori algorithm.
作者 袁剑 王文海
出处 《青岛科技大学学报(自然科学版)》 CAS 2008年第5期448-451,共4页 Journal of Qingdao University of Science and Technology:Natural Science Edition
关键词 数据挖掘 关联规则 频繁项集 APRIORI算法 data mining association rule frequent item sets, Apriori algorithm
  • 相关文献

参考文献3

  • 1Park JS, Chen MS, Yu PS An effective hash based algorithm for mining association rules[C]// Proc of the 1995 ACM SIG2 MOD Int Conf management of Data. San Jose , Californla: ACM Press, 1995:175-186.
  • 2Cheung D W. Maintenance of discovered association rules in large databases: an incremental updating technique[C]// Proceedings of the 12th lnternet Engineering, 1997, 9(5):813.
  • 3陈玉婷,王斌,刘博,宋斌,李颉.关联规则挖掘算法介绍[J].计算机技术与发展,2006,16(5):21-25. 被引量:16

二级参考文献5

  • 1孟晓明.浅谈数据挖掘技术[J].计算机应用与软件,2004,21(8):34-35. 被引量:20
  • 2Han Jiawei, Kamber M- Data Mining- Concepts and Techniques[M]. United States of America: Morgan Kaufmann,2000. 267 - 270.
  • 3Agrawal R, Imielinski T, Swami A.Mining association rules between sets of items in large databases[A]. Proc 1993 ACM-SIGMOD Int Conf Management of Data(SIGMOD' 1993) [C]. Washington,D. C., United States:ACM Press, 1993. 207-216.
  • 4Han J ,Jian P, Yiwen Y. Mining frequent patterns without candidate generation[A]. In:Proceedings of the 2000 ACM SIG-MOD International Conference Management of Data[C]. Dallas:[s. n.] ,2000.1 - 12.
  • 5王燕,李睿,李明.数据挖掘技术应用研究[J].甘肃科技,2001,17(1):49-50. 被引量:9

共引文献15

同被引文献19

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部