期刊文献+

遗传算法的LVQ神经网络在遥感图像分类中的应用 被引量:5

Application of Genetic Algorithm Based on LVQ Neural Network to Remote Sensing Image Classification
下载PDF
导出
摘要 学习矢量量化(LVQ2)神经网络算法对初值非常敏感,影响遥感图像分类的精度。遗传算法具有很强的全局搜索能力和鲁棒性,能够优化LVQ2神经网络的初始权值向量,在一定程度上降低算法对初值的敏感性。本文采用遗传算法选取LVQ2神经网络的初始权值,并以江苏省扬州地区遥感图像分类为例,通过与标准LVQ神经网络、最大似然法进行比较,结果证明,利用遗传算法的LVQ2神经网络在分类精度上有了一定的提高。 One of the major weak points of Learning Vector Quantization(LVQ) neural network is its sensitivity to the initialization, which affects the remote sensing image classification accuracy. In this paper, Genetic Algorithm(GA) is used to optimize the initial value of LVQ2 neural network to make it less sensitive. The proposed method has been applied to the remote sensing image classification of Yangzhou city, Jiangsu Province, and compared with the standard LVQ neural network and Maximum Likelihood Classifier. The experiment result presents that compared with the general methods, the GA-hased LVQ2 neural network can effectively improve the precision of remote sensing image classification.
出处 《遥感信息》 CSCD 2008年第5期21-24,共4页 Remote Sensing Information
关键词 学习矢量量化 神经网络 遗传算法 遥感图像分类 learning vector quantization neural network genetic algorithm remote sensing lmage classification
  • 相关文献

参考文献6

  • 1Kohenon T. The self organizing map[J]. IEEE, 1990(78) :1464-1480.
  • 2Chung F L, Lee T. Fuzzy competitive learning[J]. Neural Networks, 1994, 7(3) :539-551.
  • 3Pal N R, Bezdeck J C, Tsao E C K. Generalized clustering networks and Kohonen's self-organizing schemes[J]. IEEE Transaction an Neural Networks, 1993, 4(4): 549-557.
  • 4楼顺天 施阳.基于MATLAB的系统分析与设计-神经网络[M].西安:西安电子科技大学出版社,1999.114-127.
  • 5张敏灵,陈兆乾,周志华.SOM算法、LVQ算法及其变体综述[J].计算机科学,2002,29(7):97-100. 被引量:14
  • 6张文修 梁怡.遗传算法的数据基础[M].西安:西安交通大学出版社,2000,5..

二级参考文献19

  • 1Bishop M. , Svenson M. , Williams K.I. Gtm: the generative topographic mapping. Neural Computation, 1998, 10(1): 215~234
  • 2Kaski S, Honkela T, Lagus K, Kohonen T. Websom-self-organizing maps of document collection. Neurocomputing, 1998, 21(1-3):101~117
  • 3Kohonen T. Self-organizing maps. 2nd edition. Berlin:Springer,1997
  • 4Kohonen T. Self-organizing and associative memory. Heidelberg:Springer, 1984
  • 5Fritzke B. Growing self-organizing networks-history, status quo,and perspectives. In:Oja E. , Kaski S. eds. Kohonen maps, Amsterdam: Elservier, 1999.131 ~ 144
  • 6Fritzke B. Growing cell structure- a self-organizing network for unsupervised and supervised learing. Neural Networks, 1994, 7(9): 1441~ 1460
  • 7Fritzke B. Let it grow-self-organizing feature maps with problem dependent structure. In :Kohonen T. , Makisara K. , Simula O.,Kangas J. eds. Artificial Neural Networks, Amsterdam: Elservier, 1991. 403~408
  • 8Friedman J H , Bentley J L , Finkel R. A. An algorithm for finding best matches in logrithmic time. ACM Trans. Math. ,1977,Software 3:209~216
  • 9Koikkalainen P. Tree structured self-organizing maps. In: Oja E. , Kaski S. eds. Kohonen maps, Amsterdam:Elservier, 1999.121~130
  • 10Koikkalainen P, Oja E. Self-organizing hierarchical feature maps.In: Proc. of the Intl. Joint Conf. on Neural Networks, San Diego,1990. 279~284

共引文献66

同被引文献114

引证文献5

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部