期刊文献+

一类超椭圆曲线上的快速除子标量乘 被引量:2

Fast Divisor Scalar Multiplications on a Class of Hyperelliptic Curves
下载PDF
导出
摘要 除子标量乘是超椭圆曲线密码体制中的关键运算.基于单除子标量乘的思想,将Duursma与Sakurai给出的关于奇素数域上一类特殊超椭圆曲线上的一个除子标量乘算法推广到奇素数域扩域上更一般的此类超椭圆曲线上,得到了两个效率更高的公式化的除子标量乘新算法.这两算法所需的运算量比二元法降低12%以上. Divisor scalar multiplication is the key operation in hyperelliptic curve cryptosystem.Based on the idea of simple divisor scalar multiplicafions,Duursma and Sakurai's algorithm for divisor scalar multiplications on a special class of hyperelliptic curves over prime fields has been improved to a larger class of such hyperelliptic curves over prime-extension fields, and two new formulized algorithms for divisor scalar multiplications are proposed. Compared with binary method,onr algorithms are much more efficient and take at leas 12% less computation amount.
作者 游林
出处 《电子学报》 EI CAS CSCD 北大核心 2008年第10期2049-2054,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.60763009) 教育部科学技术研究重点项目(No.207089) 海南省自然科学基金(No.80528)
关键词 超椭圆曲线 超椭圆曲线密码体制 单除子 除子标量乘 算法 hypcrelliptic curve hyperelliptic curve cryptosystems simple divisor divisor scalar multiplication algorithm
  • 相关文献

参考文献7

  • 1I Duursma, K Sakurai. Efficient algorithms for the Jacobian variety of hypereUiptic curves y^2 = x^p -x + 1 over a finite field of odd characteristic p [ A ]. Proceedings of International Conference on Coding Theory, Cryptography and Related Areas [ C]. Guanajuato: Springer-Verlag, 2000.73 - 89.
  • 2YOULin,FANYun.Jacobian Groups of Hyperelliptic Curves in Hyperelliptic Cryptosystems[J].Chinese Journal of Electronics,2003,12(4):642-647. 被引量:2
  • 3D Cantor. Computing in the jacobian of a hypereUiptic curve [J].Mathematics of Computation, 1987,48(177) :95 - 101.
  • 4N Koblitz. Algebraic Aspects of Cryptography [M]. Berlin: Springer-Verlag Press, 1998.159 - 168.
  • 5Joachim von zur Gathen, Ju rgen Gerhard. Modem Computer Algebra[ M ]. Cambridge: Cambridge University Press, 1999. 353 - 386.
  • 6A Enge. The extended euclidean algorithm on polynomials, and the computational efficiency of hyperelliptic cryptosystems[J]. Des. Codes Cryptography,2001,23( 1 ) :53 - 74.
  • 7YOU Lin,XU Maozhi,ZHAO Junzhong,ZHENG Zhiming.Speeding Up Scalar Multiplications on Hyperelliptic Curves by Making Use of Frobenius Endomorphism[J].Chinese Journal of Electronics,2006,15(1):123-128. 被引量:2

共引文献2

同被引文献16

  • 1江小平,李成华,向文,张新访,颜海涛.k-means聚类算法的MapReduce并行化实现[J].华中科技大学学报(自然科学版),2011,39(S1):120-124. 被引量:79
  • 2侯整风,李岚.椭圆曲线密码系统(ECC)整体算法设计及优化研究[J].电子学报,2004,32(11):1904-1906. 被引量:30
  • 3K Fong, D Hankerson, et al. Field inversion and point halving revisited[ J ].IEEE Transactions on Computers, 2004, 53 (8) : 1047- 1059.
  • 4Raveen R Goundar, Kenichi Shiota, Masahiko Toyonaga. SPA resistent scalar multiplication using golden ratio addition chain method[ J ]. International Joumai of Applied Mathematics, 2008,38(2) : 110 - 119.
  • 5Katsuyuki Okeya, Kouichi Sakurai. Efficient elliptic curve cryptosystems from a scalar multiplication algorithm with recovery of the y-coordinate on a montgomery-form elliptic curve[ A]. Proceedings of CHES2001 [ C]. Berlin, Springer-Verlag, 2001. 126- 134.
  • 6Ian F Blake, Gadeil Seroussi, Nigel P Smart. Advances in Elliptic Curve Cryptography [ M ]. London Mathematical Society Lecture Note Series 317. London. Cambridge University Press, 2005.69 - 100.
  • 7Andrew Bryne, Nicolas Meloni, Emanuel, et al. SPA resistant elliptic curve cyptosystem using addition chains[ J]. International Journal of High Performance Systems Architecture, 2007, 1 (2) : 133 - 142.
  • 8Katsuyuki Okeya, Kouichi Miyazaki, Kouichi Sakurai. A fast scalar multiplication method with randomized projective coordinates on a montgomery-form elliptic curve secure against side channel attacks[ A ]. Proceedings of ICICS2001, LNCS 2288[ C ]. Xian: Springer-Verlag, 2(D2.428 - 439.
  • 9Goundar R R, Shiota K, Toyonaga M. New slrategy for doubling-free short additon-subtraction chain [ J]. International Journal of Applied Mathematics, 2007,2(3) :438 - 445.
  • 10Nicolas Meloni. New point addition formulae for ECC application[ A] .Proceedings of WAIF2007, LNCS 4547[ C] .Berlin: Springer-Verlag, 2007.189 - 201.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部