摘要
The first-passage statistics of Duffing-Rayleigh- Mathieu system under wide-band colored noise excitations is studied by using stochastic averaging method. The motion equation of the original system is transformed into two time homogeneous diffusion Markovian processes of amplitude and phase after stochastic averaging. The diffusion process method for first-passage problem is used and the corresponding backward Kolmogorov equation and Pontryagin equation are constructed and solved to yield the conditional reliability function and mean first-passage time with suitable initial and boundary conditions. The analytical results are confirmed by Monte Carlo simulation.
The first-passage statistics of Duffing-Rayleigh- Mathieu system under wide-band colored noise excitations is studied by using stochastic averaging method. The motion equation of the original system is transformed into two time homogeneous diffusion Markovian processes of amplitude and phase after stochastic averaging. The diffusion process method for first-passage problem is used and the corresponding backward Kolmogorov equation and Pontryagin equation are constructed and solved to yield the conditional reliability function and mean first-passage time with suitable initial and boundary conditions. The analytical results are confirmed by Monte Carlo simulation.
基金
the Foundation of ECUST(East China University of Science and Technology)for Outstanding Young Teachers(YH0157105)