期刊文献+

离群点挖掘方法综述 被引量:69

Survey of Outlier Mining
下载PDF
导出
摘要 离群点挖掘可揭示稀有事件和现象、发现有趣的模式,有着广阔的应用前景,因此引起广泛关注。首先介绍离群点的定义、引起离群的原因和离群点挖掘算法的分类,对基于距离和基于密度的离群点挖掘算法进行了比较详细的讨论,指出了其优缺点和发展方向,重点对当前研究的热点——高维大数据量的挖掘、空间数据挖掘、时序离群点挖掘和离群点挖掘技术的应用进行了讨论,指出了进一步研究方向。 The identification of outliers can lead to the discovery of truly unexpected knowledge in areas such as electronic commerce, credit card fraud, and even the analysis of performance statistics of professional athletes. This survey provided a comprehensive overview of existing outlier mining techniques and summarized their features to help users choose, studied and improve algorithms for outlier mining. Studied the outlier mining techniques on high-dimensional data, spatial data and sequential data, pointed out the advantages and disadvantages, and put forward their researeh direction about outlier mining in future work.
出处 《计算机科学》 CSCD 北大核心 2008年第11期13-18,27,共7页 Computer Science
基金 国家自然科学基金(60603041) 江苏省高校自然科学基金(05KJB520017)
关键词 离群点挖掘 局部离群点 子空间 剪枝 空间离群点 高维数据 数据流 Outlier mining, Local outlier, Subspace, Pruning, Spatial outlier, High dimensional data, Sequential data
  • 相关文献

参考文献63

  • 1薛安荣,鞠时光,何伟华,陈伟鹤.局部离群点挖掘算法研究[J].计算机学报,2007,30(8):1455-1463. 被引量:96
  • 2Han Jiawei , Micheline K. Data mining : concepts and techni ques. 2nd edition. San Francisco: Morgan Kaufmann Publishers, 2006
  • 3Tan Pang-Ning, Michael S, Vipin K. Introduction to data mining. New York: Addison-Wesley, 2006
  • 4Knorr E, Ng R. Algorithms for mining distance-based outliers in large datasets// Proc. of the 24th VLDB Conference. New York, 1998:392-403
  • 5Knorr E,Ng R. A Unified Approach for Mining Outliers: Properties and Computation//Proc. of Knowledge Discovery and Data Mining(KDD'97). Newport Beach, 1997:219-222
  • 6Knorr E , Ng R , Tucakov V. Distance - based outliers: algori thins and applications. The VLDB Journal, 2002,8(3/4): 237- 253
  • 7Barnett V, Lewis T. Outliers in Statistical Data. 3 rd edition. New York: John Wiley and Sons, 1994
  • 8Hawkins D. Identification of outliers. London: Chapman and Hall, 1980
  • 9Shekhar S,Chawla S. A tour of spatial databases. Upper Saddle River, N.J. : Prentice Hall, 2003
  • 10Breunig M M, Kriegel H P, Ng R T, et al. OPTICS-OF: iden tifying local outliers//Proc, of the 3rd European Conference on Principles and Practice of Knowledge Discovery in Databases Leeture Notes in Computer Science 1704, Prague, 1999:262-270

二级参考文献105

  • 1陆声链,黄万华,林士敏.基于线性形态的时间序列异常模式挖掘[J].计算机与数字工程,2005,33(1):53-55. 被引量:1
  • 2..http://www.olapcouncil.org/research/APB 1R2_spec.pdf,1998.
  • 3魏藜 钱卫宁 周傲英SLOT.基于估计的高效子空间局部离群点发现[J].计算机科学,2002,29(8):122-125.
  • 4Barnett V, et al. Outliers in Statistical Data[J]. John Wiley,1994.
  • 5T Johnson, I Kwok, R Ng. Fast Computation of 2-dimensional Depth Contours[C]. Proc. 4^th Int. Conf. on Knowledge Discoveryand Data Mining, 1998.224-228.
  • 6M Joshi, R Agarwal, V Kumar. Mining Needles in a Haystack:Classifying Rare Classes Via Two-phase Rule Induction[C].ACM SIGMOD Conference Proceedings,2001.91-102.
  • 7E M Knorr, R T Ng.Algorithms for Mining Distance-based Outliers in Large Datasets[ C ]. Proc. 24^th Int. Conf. on Very Large Data Bases. New York, NY, 1998. 392-403.
  • 8S Ramaswamy, R Rastogi, S Kyuseok. Efficient Algorithms for Mining Outliers from Large Data Sets[ C ]. Proc. ACM SIGMOD Int. Conf. on Management of Data, 2000.
  • 9D Hawkins.Identification of Outliers[M]. Chapman and Hall,London, 1980.
  • 10H Samet. The Design and Analysis of Spatial Data Strueturesl[J]. Addison-Wesley, 1990.

共引文献195

同被引文献605

引证文献69

二级引证文献455

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部