摘要
在非紧超凸度量空间中建立了一个新的极大元定理.作为应用,获得了连续选择及其不动点定理和一个Browder-Fan不动点定理.最后,新建了非紧超凸度量空间中的定性对策和抽象经济的平衡点存在定理.
A new maximal element theorem in noneompact hyperconvex metric spaces is established. As application, a continuous selection and its fixed point theorem are obtained. Finally, equilibrium existence theorems for abstract economies and qualitative games in noncompact hyperconvex spaces are yielded.
出处
《大学数学》
北大核心
2008年第5期19-24,共6页
College Mathematics
基金
the Scientific Research Foundation of Bijie University(20072001)
关键词
超凸度量空间
次允许集
连续选择
极大元
不动点
定性对策
抽象经济
平衡点
hyperconvex metric space
sub admissible subset
continuous selection
maximal element
fixed point
qualitative game
abstract economy
equilibrium