期刊文献+

一种有理插值型求积公式的收敛性

On the Convergence of Rational Interpolatory Quadrature Formulas
下载PDF
导出
摘要 构造一种有理插值型求积公式,证明其收敛性,并给出数值计算实例.该方法推广了Sloan和Smith等人的结果. Let ω be a L1 integrable function on [-1,1] and denote Iω(f)=∫-11ω(x)f(x)dx,where f(x) is any bounded integrable function with respect to the weight function ω. In this paper, we consider rational interpolatory quadrature formulas (RIQFs) for Rn={p(x)/∏n(x),p∈Pn-1}, and study the convergence of the RIQFs. At the same time, numerical examples are given, that support the theory developed in this paper.
作者 周志强
机构地区 怀化学院数学系
出处 《大学数学》 北大核心 2008年第5期103-107,共5页 College Mathematics
基金 湖南省教育厅科研基金资助项目(04C464 07C505)
关键词 正交多项式 权函数 插值型求积公式 orthogonal polynomial RIQFs weight functions
  • 相关文献

参考文献10

  • 1Sloan I H and Smith E W. Product integration with the Clenshaw-Curtis and related points: convergence properties [J]. Numer. Math., 1978, (30):415-428.
  • 2Smith E W and Sloan I H. Product-integration rules based on the zeros of Jacobi polynomials[J]. SIAM, J. Numer. Anal., 1980,(17): 1-13.
  • 3Sloan I H and Smith E W. Properties of interpolatory product integration rules[J]. SIAM, J. Numer. Anal. , 1982,(19):427-442.
  • 4Davis P J. Interpolation and Approximation[M]. New York: Dover Publications Inc. , 1975.
  • 5Davis P J and Rabinowitz P. Methods of Numerical Integration[M]. New York: Academic Press, 1984.
  • 6Gautschi W. Gauss-type quadrature rules for rational functions[J]. Internat. Ser. Numer. Math., 1993, (112): 111-130.
  • 7Gonzalez-vera P, Jimenez Paiz M, Orive R and Lopez Lagomasino G. On the convergence of quadrature formulas connected with multipoint Pade-type approximation[J]. J. Math. Anal. Appl. , 1996,(202):747-775.
  • 8Hille E. Analytic function theory Vol. Ⅱ[M]. New York: Ginn, 1962.
  • 9Krylov V I. Approximate calculation of integrals[M]. New York: The Macmillan Company, 1962.
  • 10Schneider C. Rational Hermite interpolation and quadrature[J]. Internat. Ser. Numer. Math., 1993, (112): 349-357.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部