期刊文献+

数据挖掘软件SemRepr的评价 被引量:5

Evaluation of the data mining software SemRepr
下载PDF
导出
摘要 介绍通过自然语言关系提取方式进行数据挖掘的软件SemRep的功能和使用方法,以及其优势、劣势和发展趋势,并验证其数据挖掘的有效性。 The function of SemRepr and the methods to mine data using the representation of natural semantic relations were introduced. The advantages and disadvantages as well as the developing tendency of SemRepr were described. A verification procedure was performed to prove the efficiency of SemRepr in mining data.
作者 丁云轩 闫雷
出处 《中华医学图书情报杂志》 CAS 2008年第6期71-75,共5页 Chinese Journal of Medical Library and Information Science
关键词 数据挖掘 SemRep 自然语言 data mining SemRepr natural language
  • 相关文献

参考文献5

  • 1于长春,贺佳,范思昌,马修强,陆健,贺宪民,吴骋.数据挖掘技术在医学领域中的应用[J].第二军医大学学报,2003,24(11):1250-1252. 被引量:42
  • 2梅馨,邢桂芬.文本挖掘技术综述[J].江苏大学学报(自然科学版),2003,24(5):72-76. 被引量:29
  • 3Aronson A R. MetaMap: Mapping text to the UMLS Metathesaurus[ EB/ OL]. (2006 - 07 - 14). http://skr. nlm. nih. gov/papers/references/metamap06. pdf.
  • 4Marcelo F, Rindtlesch T C, Kilicoglu H. Integrating a hypemymic proposition interpreter into a semantic processor for biomedical texts [ J ]. AMIA Annu Symp Proc ( ISSN: 1559 - 4076 ), 2003: 239 - 243.
  • 5Hristovski D, Friedman C, Rindflesch TC, et al. Exploiting semantic relations for literature - based diseovery[J]. AMIA Annu Syrup Proc ( ISSN 1559 - 4076), 2006:349 - 53.

二级参考文献39

  • 1Filippo Neri , Lorenza Saitta . Machine Learing for Information Extraction[J ]. Information Extraction: A Mulidisciplinary Approach to an Emergine Information Technology, 1997,1299 : 171 - 191.
  • 2Dieter Merkl, A Min Tjoa. Data Mining in Large Free Text Document Archives[C]. In: Proceedings of the International Symposium on Cooperative Database Systems for Advanced Applications ( CODAS'96 ).Kyoto,Japan, 1996.
  • 3Wendy Lehnert. A Performance Evaluation of Text Analysis Technologies[ J ]. AI Magazine, 1991,81 - 94.
  • 4Heikki Mannila. Methods and Problem in Data Mining[C]. In: Afrati F, Kolaitis P. Proceedings of International Conference on Database Theory. Greece: Springer-Verlag, 1997.
  • 5Kanagasa R, Tan A H. Topic Detection, Tracking and Trend Analysis Using Self-organizing Neural Networks[ C]. In: Fifth Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD'01 ). Hong Kong, 2001.
  • 6Gerald DeJong. An Overview of the Frump System[C].In: Lehnert W B, Ringle M H. Strategies for NaturalLanguage Processing. Erlbaum, 1982.
  • 7Helena Ahonen, Oskari Heinonen, Mika Klemettinen,Inkeri Verkamo A. Mining in the Phrasal Frontier[C].In: Proceedings of PKDD' 97 - 1st European Symposium on Principles of Data Mining and Knowledge Discovery. Norway: Trondheim, 1997.
  • 8Helena Ahonen, Oskari Heinonen, Mika Klemettinen,Inkeri Verkamo A [ J ]. Applying Data Mining Techniques in Text Analysis, 1997 (2) : 4 - 8.
  • 9Ronen Feldman, Willi Klosgen, Yaniv Ben-Yehuda, Gil Kedar, Vladmir Reznikov. Pattern Based Browsing in Document Collections[J]. Principles of Data Mining and Knowledge Discovery, 1997, 1263: 112-122.
  • 10Oren Etzioni. The World-Wide Web: Quagmire or Gold Mine[J ]. Communications of the ACM, 1996,39 ( 11 ) :65 - 68.

共引文献69

同被引文献49

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部