期刊文献+

射影流形上小收缩态射的翻转与法丛的关系

Relations between normal bundles and Flips of morphisms on projective manifolds
下载PDF
导出
摘要 设X是射影流形,f:X→Y是X的小收缩态射,f的例外集E是光滑子簇.如果f(E)是零维的,E的维数不大于X的一半且法丛NE/X与tOE(-1)同构,t=codimE,那么f的翻转f+:X+→Y一定存在. Let X be a projective manifold andf:X→ Y a small contraction morphism of X. Let the exceptional locus E off be smooth subvariety. Suppose that the dimension off(E) is zero and the normal bundleis NE/x is +OE( -1 ) ,where t = codimE. Then there exists the flip f+ :X+→Y of f.
作者 苏继红
机构地区 暨南大学数学系
出处 《暨南大学学报(自然科学与医学版)》 CAS CSCD 北大核心 2008年第5期421-423,共3页 Journal of Jinan University(Natural Science & Medicine Edition)
基金 国家自然科学基金资助项目(10661003)
关键词 射影流形 小收缩态射 翻转 法丛 projective manifold small contraction flip normal bundle
  • 相关文献

参考文献10

  • 1MORI S. Flips theorem and the existence of minimal models for 3-folds [ J ]. J Amer Math Soc, 1988, ( 1 ) : 117 - 253.
  • 2KAWAMATA Y. Small contractions of four dimensional algebraic manifolds[J]. Math Ann, 1989, 284:595 - 600.
  • 3KACHI Y. Flips from4-folds with isolated complete intersection singularities[J]. Amer J Math, 1998, 120:43- 102.
  • 4MORI S. Threefolds whose canonical bundles are not numerically effective[J]. Ann Math, 1982, 116: 133- 176.
  • 5KAWAMATA Y, MATSUDA K, MATSUKI K. Introduction to the minimal model problem[J]. Advan Stud Pure Math, 1987, (10) : 283 -360.
  • 6WISNIEWSKI A. On contractions of extremal rays of Fano manifolds[J].J Reine Angew Math, 1991,417:141 - 157.
  • 7KLEIMAN L. Towards a numerical theory of ampleness [J]. Arm Math, 1966, 84:293 -344.
  • 8苏继红,赵逸才.奇维数代数簇的小收缩映射的结构[J].中国科学(A辑),2006,36(12):1355-1364. 被引量:2
  • 9HARTSORNE R. Algebraic Geometry [ M ]. New York: Springer-Vedag, 1978.
  • 10GRIFFITHS P, HARRIS J. Principles of Algebraic Geometry[ M]. New York: Wiley Interscience Publication, 1978.

二级参考文献3

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部