期刊文献+

一种高分辨率遥感图像目标自动提取方法 被引量:4

A Method for Automatic Object Extraction in High-resolution Remote Sensing Image
下载PDF
导出
摘要 该文提出一种高分辨率遥感图像目标自动提取方法,该方法首先使用分类器实现目标的快速检测,然后利用图像色彩模型和平滑性先验知识建立分割代价函数,并最小化此代价函数实现目标的精确提取,最后在后处理步骤中加入目标的形状先验知识,进一步提高精度。以油罐提取为例进行了实验,结果证明了该方法的有效性和鲁棒性。 In this paper, a method for automatic object extraction in high-resolution remote sensing image is proposed. First, a robust multilayer classifier is employed to detect the object efficiently. Secondly, a cost function based on the color model and the smoothness prior knowledge is built up and minimized to segment the object accurately. Lastly, in the post processing stage, the shape prior knowledge of the object is utilized to eliminate the false positives and improve the extraction precision. As an example of objects in remote sensing images the oil tanks are extracted. Experimental results demonstrate the robustness and effectiveness of the proposed automatic object extraction method.
出处 《电子与信息学报》 EI CSCD 北大核心 2008年第11期2732-2736,共5页 Journal of Electronics & Information Technology
关键词 Adaboost 有监督学习 高斯混合模型 EM(Expectation Maximization)算法 目标提取 Adaboost Supervised learning Gauss mixture model Expectation maximization algorithm Object extraction
  • 相关文献

参考文献10

  • 1Boykov Y and Jolly M P. Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. International Conference on Computer Vision (ICCV), Vancouver, B C, Canada, 2001, 1: 105-112.
  • 2Rother C, Kolmogorov V and Blake A. GrabCut-Interactive foreground extraction using iterated graph cuts. ACM SIGGRAPH, Los Angeles, USA, 2004: 309-314.
  • 3Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of simple features. Proceeding of IEEE Conference on CVPR, Kauai, Hawaii, USA, 2001, 1: 511-518.
  • 4Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Logistic regression: A statistical view of boosting. The Annals o.f Statistics, 2000, 28(2): 337-374.
  • 5Jamie Shotton, John M. Winn, Carsten Rother, and Antonio Criminisi. TextonBoost: joint appearance, shape and context modeling for multi-class object recognition and segmentation. ECCV, Graz, Austria, 2006: 1-15.
  • 6Jeff Bilmes. A gentle tutorial of the EM algorithm and its application to parameter estimation for gaussian mixture and hidden markov models. ICSI TR-97-021, U.C. Berkeley, 1998.
  • 7Xu L. Bayesian-kullback coupled Ying-Yang Machines: unified learnings and new results on vector quantization. International Conference on Neural Information Processing (ICONIP95), Beijing, China, 1995: 977-988.
  • 8Xu L. Bayesian Ying-Yang machine, clustering and number of clusters. Pattern Recognition Letters, 1997, 18(11-13): 1167-1178.
  • 9Goldberger J, Gordon S, and Greenspan H. An efficient image similarity measure based on approximations of kl-divergence between two gaussian mixtures. International Conference on Computer Vision (ICCV), Nice, France, 2003: 487-494.
  • 10Orchard M and Bounman C. Color quantization of images. IEEE Trans. on Signal Processing, 1991, 39(12): 2677-2690.

同被引文献50

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部