期刊文献+

一种改进的遥感图像变化检测算法 被引量:1

An Improved Approach to Change Detection in Multitemporal Remote-Sensing Images
下载PDF
导出
摘要 原有基于简单马尔可夫随机场(MRF)模型的变化检测算法基于全局一致性假设,这一假设往往与实际情况不符,影响到结果准确性。本文提出基于观察场与标号场互相关的改进MRF模型及相应的变化检测算法。以迭代条件模型解决后验概率最大化问题,为像素分类;根据当前分类,利用邻域中同类像素调整观察场中的像素特征值;以新的像素特征进一步优化分类。本文采用两段迭代算法,以多时相遥感图像的差值图像做为观察场。实验证明该算法能有效提高检测结果精度。 Traditional unsupervised change detection algorithms based on simple MRF model assume that subimages applied to extracting features are homogeneous, but that is not always true and causes low accuracy. Based on the fields Correlation Markov Random Field (CMRF) model, an adaptive algorithm is proposed in this paper. The labeling is obtained through solving a Maximum A Posterior (MAP) problem by Iteration Condition Model (ICM). Features of each pixel are exacted by using only the pixels currently labeled as the same pattern. With the adapted features, the new labeling is obtained. Under the idea of two-stage iteration algorithm, we use the difference image of multitemporal remote-sensing images as observation field. The satisfied experimental confirm the effectiveness of proposed techniques.
作者 袁琪 赵荣椿
出处 《电子与信息学报》 EI CSCD 北大核心 2008年第11期2737-2741,共5页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60472072) 博士点基金(20040690034)资助课题
关键词 多时相遥感图像 互相关马尔可夫随机场 最大后验概率 同步自回归模型 迭代条件模型 Multitemporal remote-sensing images Correlation MRF (CMRF) Maximum A Posterior (MAP) Simultaneous auto-regressive, Iteration condition model
  • 相关文献

参考文献17

  • 1Carlotto M J. Detection and analysis of change in remotely sensed imagery with application to wide area surveillance. Image Processing, 1997, 6(1): 189-202.
  • 2Bruzzone L, and Prieto D F. Automatic analysis of the difference image for unsupervised change detection. IEEE Trans. on Geosci and Remote Sensing, 2000, 38(8): 1170-1182.
  • 3Fung T. An assessment of TM imagery for land-cover change detection. IEEE Trans. on Geosci. Remote Sensing, 1990, 28(12): 681-684.
  • 4Singh A. Digital change detection techniques using remotely sensed data. Int. J. Remote Sensing, 1989, 10(6): 989-1003.
  • 5Townshend Jr R G and Justice C O. Spatial variability of images and the monitoring of changes in the normalized difference vegetation index. Int. J. Remote Sensing, 1995, 16(12): 2187-2195.
  • 6Melgani F and Moser G. Unsupervised change-detection methods for remote-sensing images. Opt. Eng, 2002, 41(12): 3288-3297.
  • 7Nielsen A A, Conradsen K, and Simpson J J. Multivariate alteration detection(MAD) and MAF processing in multispectral, bitemporal image data: New approaches to change detection studies. Remote Sensing Environ, 1998, 64(1): 1-19.
  • 8Bruzzone L and Prieto D F. An adaptive semiparametric and context-based approach to unsupervised change detection multitemporal remote-sensing Images. IEEE Trans. on Image Processing, 2002, 11(4):452-466.
  • 9Bazi Y, Bruzzone L, and Melgani F. An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images. IEEE Trans. on Geosci and Remote Sensing, 2005, 43(4): 874-887.
  • 10Wiemker D. An iterative spectral-spatial Bayesian labeling approach for unsupervised robust change detection on remotely sensed multispectral imagery. Proceedings of the 7th Int. Conf. on Computer Analysis of Images and Patterns, 1997, 1296: 263-270.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部