期刊文献+

基于类Markov链的用户浏览行为预测方法 被引量:6

Prediction Method of User Browsing Behaviors Based on Classified Markov Chain
下载PDF
导出
摘要 根据浏览历史对用户进行有效聚类,建立基于用户聚类的用户浏览行为预测模型是Web环境下实现个性化服务的关键。该文对系统用户进行聚类,产生相似用户群,根据每个相似用户群的浏览特征,建立基于相似用户群的类Markov链用户浏览行为预测模型,实验验证了该模型的有效性。 In Web environment, clustering Web users based on the browsing behaviors and building user browsing sequences prediction model based on user cluster are keys to achieve the personalized services. This paper produces similar user groups through clustering Web users. According to browsing features of each similar user group, the classified Markov chains based on the different similar user groups are built. Experimental result shows the efficiency of the model.
作者 何丽
出处 《计算机工程》 CAS CSCD 北大核心 2008年第22期32-33,36,共3页 Computer Engineering
基金 天津市高等学校科技发展基金资助项目(20061015)
关键词 浏览序列 用户聚类 MARKOV链 browsing sequence user clustering Markov chain
  • 相关文献

参考文献3

二级参考文献15

  • 1[1]Srivastava J,et al. Web usage mining:Discovery and application of usage patterns from web data- SIGKDD Explorations, 2000, 1(2)
  • 2[2]FastStats 2. 6. Available at: http://www. mach5. com/fast/,1999
  • 3[3]Cohen E,Krishnamurthy B,Rexford J. Improving end-toend prerformance of the web using server volumes volumes and proxy filters. In:proc. ACM SIGCOMM. 1998.241~253
  • 4[4]World wide web committee web usage characterization activity. Available at :http://www. w3c. org/WCA 1999
  • 5[5]Catledge L, Pitkow J. Characterizing browsing behaviors on the world wide web. Computer Networks and ISDN Systems, 1995,27(6)
  • 6[6]Fayyad U, et al. From data mining to knowledge discovery: An overview. In: Proc. ACM KDD, 1994FUZZY ARTMAP
  • 7史忠植.知识发现[M].北京:清华大学出版社,2001..
  • 8Lawrence S, Giles C L. Accessibility of information on the Web. Nature, 1999, 400(7): 107-109
  • 9Zuckerman I, Albrecht D, Nicholson A. Predicting user′s requests on the WWW. In: Proceedings of the 7th International Conference on User Modeling, New York: Springer, 1999.275~284
  • 10Borges J, Levene M. Data mining of user navigation patterns. In: Proceedings of the 1999 KDD Workshop on Web Mining, CA: Springer-Verlag Press, 1999.92~111

共引文献64

同被引文献41

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部