期刊文献+

Marcinkiewicz积分在加权Campanato空间上的有界性(英文) 被引量:3

Marcinkiewicz integrals on weighted Campanato spaces
下载PDF
导出
摘要 Marcinkiewicz积分是分析中的一类被广泛研究的重要算子,建立了Macinkiewicz积分算子在加权Campanato空间上的有界性. The Marcinkiewicz integrals are class of important operators in analysis and are widely studied. The boundedness of the Marcinkiewicz integral operator on certain weighted Campanato spaces is estiblished.
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2008年第6期608-610,共3页 Journal of Zhejiang University(Science Edition)
基金 Project supported by NSFC(10261007)
关键词 CAMPANATO空间 权函数 MARCINKIEWICZ积分 Campanato spaces weight functions Marcinkiewicz integral
  • 相关文献

参考文献8

  • 1STEIN E M. On the function of Littlewood-paley, I.usin and Marcinkiewicz[J]. Trans Amer Math, 1958, 88:430-466.
  • 2BENEDEK A, CALDERON A, PANZONE R. Convolution operator on Banach space valued functions[J]. Proc Nat Acafl Sci USA, 1962,48:356-365.
  • 3DING Y, FAN D, PAN Y. L^P-boundedness of Marcinkiewicz integrals with Hardy space function kernels[J]. Acta Math Sinica: English Series, 2000,16:593- 600.
  • 4TORCHINSKY A, WANG S L. A note on the Marcinkiewicz integrals[J]. Colloq Math, 1990,60:235-243.
  • 5WANG Y S. Littlewood-paly g-operator on weighted Campanato spaces[J]. J of Henan Normal University: Natural Science, 1995,23:22-25.
  • 6DING Y, LU S Z, XUE Q Y. On Marcinkiewicz integral with homogeneous kernels[J]. J of Mathematical Analysis and Application, 2000,245 : 471-488.
  • 7WANG S L. Boundedness of the Littlewood-paly gfunction onLipn(R^n)(0<α<1) Ⅲ[J]. J Math, 1989, 33:531-541.
  • 8JIANG Li-ya. Boundedness of certain Marcinkiewicz integral operators on product spaces[J]. J of Zhejiang University: Science Edition, 2005,32(6) :611-615.

同被引文献11

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部