期刊文献+

脉冲等离子体气动激励抑制翼型吸力面流动分离的实验 被引量:72

Experimental Investigation on Airfoil Suction Side Flow Separation by Pulse Plasma Aerodynamic Actuation
下载PDF
导出
摘要 为了提高等离子体气动激励控制附面层的能力,进行了脉冲等离子体气动激励抑制NACA 0015翼型失速分离的实验,研究了等离子体气动激励电压、位置、占空比和脉冲频率等对流动分离抑制效果的影响。在来流速度为72m/s时,等离子体气动激励可以有效地抑制翼型吸力面的流动分离,翼型的升力增大约35%,翼型的临界失速迎角由18°增大到21°。实验结果表明:分离越严重,来流速度越大,有效抑制翼型失速分离的阈值电压越大;等离子体气动激励的最佳位置在流动分离起始点的前缘;调节占空比,可以在控制效果相当的情况下,降低等离子体气动激励所消耗的功率;当脉冲频率使斯特劳哈尔数等于1时,控制效果最佳。 Experimental investigation of NACA 0015 airfoil stall separation suppression by plasma aerodynamic actuation is performed for the sake of improving the flow control capability of plasma aerodynamic actuation. Research on how plasma actuation voltage, actuation position, duty cycle and pulse frequency affect the flow separation suppression effect is done. It is found that when the inflow velocity is 72 m/s, plasma aerodynamic actuation can effectively suppress flow separation on the suction side of the airfoil, which causes a lift augment of 35%. The stall angle of the airfoil increases from 18° to 21°. Experimental results indicate that the thres hold voltage becomes higher as the inflow velocity becomes higher and the flow separation becomes more serious. The best position of plasma aerodynamic actuation is right at the leading edge of the flow separation origin line. Power consumption can be reduced by adjusting the duty cycle for equivalent control effects. The best control effect is obtained when the Strouhal number becomes one achieved by adjusting pulse frequency.
出处 《航空学报》 EI CAS CSCD 北大核心 2008年第6期1429-1435,共7页 Acta Aeronautica et Astronautica Sinica
基金 国家"863计划"(2005AA753031) 教育部优秀人才支持计划 空军工程学院优秀博士学位论文创新基金(BC07001)
关键词 航空航天推进系统 等离子体气动激励 翼型 流动分离 流动控制 aerospace propulsion system plasma aerodynamic actuation irfoil flow separation flow control
  • 相关文献

参考文献15

  • 1Lord W K, MacMartin D G, Tillman T G. Flow control opportunities in gas turbine engines[R]. AIAA-2000- 2234, 2000.
  • 2Gilarranz J L, Rediniotis O K. Compact high power synthetic jet actuators for flow separation control[R]. AIAA- 2001-0737, 2001.
  • 3Seifert A, Pack L G, Oscillatory excitation of unsteady compressible flows over airfoils at flight Reynolds numbers [R]. AIAA-1999-0925, 1999.
  • 4Jenkins L N, Khorrami M R, Choudhari M. Characterization of unsteady flow structures near leading-edge slat: part Ⅰ. PIV measurements[R]. AIAA-2004-2801, 2004.
  • 5Moreau E. Airflow control by non -thermal plasma actuators[J]. Journal of Physics D: Applied Physics, 2007, 40: 605-636.
  • 6Post M L, Corke T C. Separation control using plasmas actuators- stationary and oscillating airfoils[R]. AIAA-2004-0841, 2004.
  • 7Corke T C, Post M L. Overview of plasma flow control concepts, optimization and applications[R]. AIAA-2005- 0563, 2005.
  • 8Roupassov D, Zavialov I, Starikovskii A, et al. Boundary layer separation plasma control using low-temperature non-equilibrium plasma of gas discharge[R]. AIAA-2006- 0373, 2006.
  • 9Patel M P, Ng T T, Vasudevan S, et al. Scaling effects of an aerodynamic plasma actuator[R]. AIAA-2007-0635, 2007.
  • 10Roupassov D V, Nikipelov A A, Nudnova M M, et al. Flow separation control by plasma actuator with nanosecond pulse periodic discharge [R]. AIAA-2008-1367 2008.

二级参考文献21

  • 1宋慧敏,李应红,魏沣亭,张朴.等离子体电流体动力激励器的建模与仿真[J].高电压技术,2006,32(3):72-74. 被引量:27
  • 2Post M L, Corke T C. Separation Control on High Angle of Attack Airfoil Using Plasma Actuators[ R]. AIAA 2003 - 1024.
  • 3Skvortsov V, Kunetsov Y, Klimov A, et al. Investigation of the Plasma Aerodynamic Effects On the Models of Various Geometry[R]. AIAA 99 -4854.
  • 4Soldati A. Influence of Large - Scale Streamwise Vortical EHD Flows on Wall Turbulence [ J ]. International Journal of Heat and Fluid Flow, 2002, 23:441 -443.
  • 5Hultgren L S, Ashpis D E. Demonstration of Separation Delay With Glow - Discharge Plasma Actuators [ R ], AIAA 2003 -1025.
  • 6Shyy W, Jayaraman B, Andersson A. Modeling of Glow Discharge -Induced fluid Dynamics [ J ]. Journal of Applied Physics,2002, 92 ( 11 ) : 6434 - 6443.
  • 7Chen Z. PSPICE simulation of OAUGDP Reactor Systems[ J ]. IEEE Trans on Plasma Science, 2003, 31 (4) : 511 -520.
  • 8Roy S, Gaitonde D V. Lonized Collisional Flow Model for Atmosphere RF Application[ R]. AIAA 2004 -0354.
  • 9Roy S, Gaitonde D V. Radio Frequency Induced ionized Collisional Flow Model for Application at Atmospheric Pressures [ J ].Journal of Applied Physics, 2004, 96(5) : 2476 - 2481.
  • 10李应红,张朴,刘建勋,等.基于等离子体的流动控制研究现状及分析[A].中国航空学会航空百年学术论坛动力分论坛论文集:自动控制分册(七分册)[C].北京:中国航空学会动力专业分会,2003:131—136.

共引文献59

同被引文献775

引证文献72

二级引证文献394

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部