期刊文献+

基于理想点的三角模糊数群体多属性决策法 被引量:14

Method for Triangular Fuzzy Number Multiple Attributive Group Decision Making Based on Ideal Solution
下载PDF
导出
摘要 针对模糊群体多属性决策问题,提出了一种新的属性权重和属性值均以三角模糊数形式给出的模糊群体多属性决策方法.该方法先假设方案在主观评价属性下的属性值采用三角模糊数的形式来表示专家评价值的模糊性和不确定性,而后假定每一主观评价属性都有一组相应的专家权重值,以反映专家在不同评价属性中的重要性程度,同时考虑到专家意见的相似度,将专家意见进行集结得到专家群体关于方案集的模糊决策矩阵.最后定义了三角模糊数正理想方案和负理想方案,计算各方案与理想方案的接近度,以此给出了三角模糊数群体多属性决策问题的理想点法.通过实例分析说明了该方法的可行性和有效性. For the fuzzy multiple attributive group decision making problems,a new method for the fuzzy group multi-attribute decision-making that the attribute weights and the attribute values are both in the forms of triangular fuzzy numbers is proposed. The method first suppose the alternative's evaluation values under subject attribute are triangular fuzzy numbers which are to express the vagueness and uncertainty of experts' evaluation values. And then assume that each subjective attribute,has a corresponding weight value vector of the experts to express the opinion's important degree of each expert in different area while the similarity of the expert's opinion is also taken into account and expert's opinions are aggregated to gain the fuzzy decision matrix of experts' group on the alternative set. Finally, the positive ideal scheme and negative ideal scheme for triangular fuzzy numbers are defined. The alternatives are ranked by the proximity degrees of each alternative to ideal solution. A method based on ideal solution to fuzzy group multi-attribute decision-making problem of triangular fuzzy numbers is presented. At last,a numerical example is put forward to illustrate the feasibility and effectiveness of the developed method.
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第6期812-817,共6页 Journal of Xiamen University:Natural Science
基金 985智能化安全信息技术项目(0000-x07204)资助
关键词 模糊群体多属性决策 三角模糊数 理想点 专家权重 相似度 fuzzy multi-attribute group decision-making triangular fuzzy numbers ideal solution expert's weight similarity degree
  • 相关文献

参考文献14

  • 1Hwang C L, Yoon K. Multiple attribute decision making [M]. Berlin: Springer-Verlag, 1981.
  • 2Edwards W, Barron F H. Smarts and smarter., improved simple methods for multi-attribute utility measurement [J]. Organizational Behavior and Human Decision Processes, 1994,60 : 252-266.
  • 3Bryson N, Mobolurin A. An action learning evaluation procedure for multiple criteria decision making problems [J]. European Journal of Operational Research, 1996, 96 (2):379-386.
  • 4Kweku-Muata, Osei-Bryson. Evaluation of decision trees : a multi-criteria approach [J]. Computers & Operations Research,2004,31 : 1933 1945.
  • 5许叶军,达庆利.不确定型多属性决策的权系数确定及其应用[J].系统工程理论方法应用,2005,14(5):434-436. 被引量:40
  • 6Hwang Yoon. Multiple attribute decision making-method and application[M]. Berlin: Springer-Verlag Publishers, 1981.
  • 7Liang G S, Wang M J. A fuzzy multi-criteria decision making method for facility site selection[J]. International Journal of Production Research, 2001,29 : 2313-2330.
  • 8Yeh C H,Deng H,Chang Y H. Fuzzy multicriteria analysis for performance evaluation of bus companies[J]. European Journal of Operational Research, 2000, 126:459 - 473.
  • 9徐泽水.对方案有偏好的三角模糊数型多属性决策方法研究[J].系统工程与电子技术,2002,24(8):9-12. 被引量:165
  • 10Lee D H, Park D. An efficient algorithm for fuzzy weighted average[J].Fuzzy Sets and Systems, 2001,120:435-444.

二级参考文献42

共引文献288

同被引文献139

引证文献14

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部