期刊文献+

中间退火对形变Cu-15Cr-0.1Zr原位复合材料性能的影响

Effects of Intermediate Annealing on Properties of Deformation Processed Cu-15Cr-0.1Zr in Situ Composites
下载PDF
导出
摘要 研究了采用中间退火+冷变形方法制备的形变Cu-15Cr-0.1Zr原位复合材料的显微组织、抗拉强度和导电性。结果表明:铸态铬相为树枝晶,在变形过程中,铬相变成纤维状,横截面上呈卷曲薄片状;适当的中间退火能显著提高其电导率;配合适当的中间退火与冷变形,可以得到较好的强度和导电性;应变量为6.43时,采用450℃+400℃或500℃+500℃两次中间退火工艺制备的形变Cu-15Cr-0.1Zr原位复合材料具有较好的性能组合,分别为1227 MPa/64.8%IACS、1025 MPa/71.5%IACS。 The structure, strength and electrical conductivity of deformation processed Cu-15Cr-0. 2Zr in situ composites obtained by cold drawing combined with intermediate annealing were studied. The results showed that the as cast Cr phase was dendrite. Cr phase was drawn into fine ribbons during the drawing process and the Cr ribbons were curl and fold in cross section. The electrical conductivity can be obviously improved by appropriately intermediate annealing. Combination of cold drawing with appropriate intermediate annealing might result in good combinations of the tensile strength and electrical conductivity. The preferable combination of the electrical conductivity and the tensile strength of deformation processed Cu-15Cr-0. lZr in situ composites were obtained by 450 ℃-F400℃ and 500 ℃+500 ℃ intermediate annealing technics as follows. 1 227 MPa/64. 8%IACS and 1 025 MPa/71.5% IACS.
出处 《机械工程材料》 CAS CSCD 北大核心 2008年第11期42-45,56,共5页 Materials For Mechanical Engineering
基金 国家自然科学基金资助项目(50571035) 国家“863”计划资助项目(2006AA03Z2528)
关键词 形变原位复合材料 强度 电导率 中间退火 Cu-15Cr-0.1Zr合金 deformation processed in situ composite strength conductivity intermediate annealing Cu15Cr-0. 1Zr alloy
  • 相关文献

参考文献5

  • 1Jin Y, Adachi K, Takeuchi T,et al. Ageing characteristics of Cu-Cr in-situ composite [J]. Journal of Materials Science, 1998,33:1333-1341.
  • 2Hong S I, Hill M A. Mechanical stability and electrical conductivity of Cu-Ag filamentary microcomposites[J]. Materials Science and Engineering, 1999, A264 : 151 - 158.
  • 3Hong S I, Hill M A. Microstructure and conductivity of Cu- Nb microcomposites fabricated by the bundling and drawing process[J]. Scripta Materialia,2001,44(10):2509-2515.
  • 4Song J S, Hong S I, Kim H S. Heavily drawn Cu-Fe-Ag and Cu-Fe-Cr microcomposites[J]. Journal of Materials Processing Technology, 2001,113 : 610-616.
  • 5姚再起,葛继平,刘书华.形变Cu-11.5%Fe原位复合材料的强度和导电性[J].复合材料学报,2005,22(3):121-125. 被引量:15

二级参考文献10

  • 1Beck J, Harbison J P, Bell J L. Anomalous increase in strength of in situ formed Cu-Nb multifilamentary composites[J]. JApplPhys, 1978, 49: 6031-6038.
  • 2Snoeck E, Lecouturier F, Thilly L, et al. Microstructural studies of in situ produced filamentary Cu/Nb wires [J].Scripta Materialia, 1998, 38 (11): 1643-1648.
  • 3Sakai Y, Inoue K, Asano T, et al. Development of highstrength, high-conductivity Cu-Ag alloys for high-field pulsed magnet use [J]. Applied Physics Letters, 1991, 59 : 2965-2967.
  • 4Biselli C, Morris D G. Microstructure and strength of Cu-Fe in situ composites obtained from prealloyed Cu-Fe powders[J]. ActaMater, 1994, 42: 163-176.
  • 5Bielli C, Morris D G. Microstructure and strength of Cu-Fe in situ composites after very high drawing strains [J]. Acta Materialia, 1996, 44: 493-504.
  • 6Verhoeven J D, Downing H L, Chumbley L S, et al. The resistivity and microstructure of heavily drawn Cu-Nb alloys[J]. JApplPhys, 1989, 65: 1293-1301.
  • 7Hong S I, Hill M A. Microstructure and conductivity of CuNb microcomposites fabricated by the bundling and drawing process [J]. Scripta Materialia, 2001, 44: 2509- 2515.
  • 8Heringhaus Frank, Schneider-Muntau Hans Jorg, Gottstein Gunter. Analytical modeling of the electrical conductivity of metal matrix composites: Application to Ag-Cu and Cu-Nb[J]. Materials Science and Engineering, 2002, 347: 9-20.
  • 9Hong S I, Song J S, Kim H S. Thermo-mechanical processing and properties of Cu-9Fe-1.2Co microcomposite wires[J]. Scripta Mater, 2001, 45: 1295- 1300.
  • 10葛继平,陈美玲,刘书华.形变Cu-20vol%Fe原位复合材料研究[J].材料热处理学报,2003,24(4):27-32. 被引量:9

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部